Câu hỏi:
Rút gọn biểu thức: \(A=\frac{4{{x}^{3}}-5{{x}^{2}}+1}{{{x}^{2}}-1}\)
Phương pháp giải:
Phương pháp:
- Kết hợp các phương pháp phân tích đa thức thành nhân tử và thực hiện phép tính chia để thu được biểu thức rút gọn.
Lời giải chi tiết:
Cách giải:
\(\begin{array}{l}A = \frac{{4{x^3} - 5{x^2} + 1}}{{x - 1}}\\\,\,\,\,\,\, = \frac{{4{x^3} - 4{x^2} - {x^2} + 1}}{{x - 1}}\\\,\,\,\,\,\, = \frac{{4{x^2}\left( {x - 1} \right) - \left( {{x^2} - 1} \right)}}{{x - 1}}\\\,\,\,\,\,\, = \frac{{4{x^2}\left( {x - 1} \right) - \left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}}\\\,\,\,\,\,\, = \frac{{\left( {x - 1} \right)\left( {4{x^2} - x - 1} \right)}}{{x - 1}} = 4{x^2} - x - 1.\end{array}\)
Chọn A.