Trả lời câu hỏi 2 trang 104 SGK Giải tích 12

Giả sử f(x) là hàm số liên tục trên đoạn [a; b]...

Quảng cáo

Đề bài

Giả sử \(f(x)\) là hàm số liên tục trên đoạn \([a; b], F(x)\) và \(G(x)\) là hai nguyên hàm của \(f(x)\). Chứng minh rằng \(F(b) – F(a) = G(b) – G(a)\), (tức là hiệu số \(F(b) – F(a)\) không phụ thuộc việc chọn nguyên hàm).

Video hướng dẫn giải

Lời giải chi tiết

- Vì \(F(x)\) và \(G(x)\) đều là nguyên hàm của \(f(x)\) nên tồn tại một hằng số \(C\) sao cho: \(F(x) = G(x) + C\)

- Khi đó \(F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a)\).

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close