Câu hỏi:
Một kính lúp có số bội giác G = 5x.
a) Kính lúp đó có tiêu cự là bao nhiêu?
b) Một bạn học sinh dùng kính lúp này để quan sát một hình vẽ trong sách giáo khoa đặt cách kính 4cm thì nhìn thấy hình vẽ cao 8cm, hỏi chiều cao thật của hình vẽ trong sách?
Phương pháp giải:
Sử dụng các công thức: \(\left\{ \begin{array}{l}G = \frac{{25}}{f}\\\frac{1}{f} = \frac{1}{d} + \frac{1}{{d'}}\end{array} \right.\)
Lời giải chi tiết:
a)
Ta có: \(G = \frac{{25}}{f} \Leftrightarrow 5{\rm{x}} = \frac{{25}}{f} \Leftrightarrow f = \frac{{25}}{5} = 5cm\)
Vậy kính lúp đó có tiêu cự là 5cm.
b)
Gọi h, h’ và d, d’ lần lượt là chiều cao của vật, chiều cao của ảnh và khoảng cách từ vật đến kính và khoảng cách từ ảnh đến kính.
Theo đề bài ta có: \(d = 4cm;h' = 8cm\)
Áp dụng công thức thấu kính ta có:
\(\frac{1}{f} = \frac{1}{d} + \frac{1}{{d'}} \Leftrightarrow \frac{1}{5} = \frac{1}{4} + \frac{1}{{d'}} \Leftrightarrow d' = - 20cm\)
Lại có:
\( - \frac{{d'}}{d} = \frac{{h'}}{h} \Leftrightarrow - \frac{{ - 20}}{4} = \frac{8}{h} \Leftrightarrow h = 1,6cm\)
Vậy chiều cao thật của hình vẽ trong sách là 1,6cm.