Câu hỏi:

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\) và đường thẳng \(\Delta :\,\,\dfrac{{x - 1}}{3} = \dfrac{y}{{ - 2}} = \dfrac{{z + 2}}{{ - 1}}\). Mặt phẳng \(\left( \alpha  \right)\) vuông góc với \(\Delta \) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính lớn nhất. Phương trình \(\left( \alpha  \right)\) là:

  • A \(3x - 2y - z - 5 = 0\)  
  • B \(3x - 2y - z + 5 = 0\)
  • C \(3x - 2y - z + 15 = 0\)
  • D \(3x - 2y - z - 15 = 0\)

Phương pháp giải:

- Vì \(\left( \alpha  \right) \bot \Delta \) nên mặt phẳng \(\left( \alpha  \right)\) có 1 VTPT là \(\overrightarrow n  = \overrightarrow u \) với \(\overrightarrow u \) là 1 VTCP của đường thẳng \(\Delta \), từ đó suy ra dạng của phương trình mặt phẳng \(\left( P \right)\).

- Áp dụng định lí Pytago: \({R^2} = {r^2} + {d^2}\), với \(R\) là bán kính mặt cầu \(\left( S \right)\), \(r\) là bán kính đường tròn \(\left( C \right)\), \(d = d\left( {I;\left( \alpha  \right)} \right)\) với \(I\) là tâm mặt cầu \(\left( S \right)\).

- Để \(r\) đạt GTLN thì \(d\) phải đạt GTNN. Áp dụng công thức tính khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\) và tìm GTNN.

Lời giải chi tiết:

Đường thẳng \(\Delta :\,\,\dfrac{{x - 1}}{3} = \dfrac{y}{{ - 2}} = \dfrac{{z + 2}}{{ - 1}}\) có 1 VTCP là \(\overrightarrow u  = \left( {3; - 2; - 1} \right)\).

Vì \(\left( \alpha  \right) \bot \Delta \) nên mặt phẳng \(\left( \alpha  \right)\) có 1 VTPT là \(\overrightarrow n  = \overrightarrow u  = \left( {3; - 2; - 1} \right)\). Khi đó phương trình mặt phẳng \(\left( \alpha  \right)\) có dạng \(3x - 2y - z + d = 0\).

Mặt cầu \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\) có tâm \(I\left( {4; - 1; - 1} \right)\), bán kính \(R = \sqrt {16 + 1 + 1 + 3}  = \sqrt {22} \).

Gọi \(r\) là bán kính đường tròn \(\left( C \right)\), \(d = d\left( {I;\left( \alpha  \right)} \right)\).

Áp dụng định lí Pytago ta có: \({R^2} = {r^2} + {d^2}\), do đó để \(r\) đạt GTLN thì \(d\) phải đạt GTNN (vì \(R = \sqrt {22} \) không đổi).

Ta có: \(d = \dfrac{{\left| {3.4 - 2.\left( { - 1} \right) - 1.\left( { - 1} \right) + d} \right|}}{{\sqrt {{3^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \dfrac{{\left| {15 + d} \right|}}{{\sqrt {14} }} \ge 0\), suy ra \({d_{\min }} = 0 \Leftrightarrow d =  - 15\).

Vậy phương trình mặt phẳng \(\left( \alpha  \right)\) cần tìm là: \(3x - 2y - z - 15 = 0\).

Chọn D.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay