Câu hỏi:
Cho hai điện tích điểm nằm dọc theo trục Ox, trong đó điện tích \(q_1 = - 9.10^{ - 6}C\) đặt tại gốc tọa độ O và điện tích \(q_2 = 4.10^{ - 6}C\) nằm cách gốc tọa độ \(20cm.\) Tọa độ của điểm trên trục Ox mà cường độ điện trường tại đó bằng không là
Phương pháp giải:
+ Công thức tính cường độ điện trường: \(E = k.\dfrac{{\left| q \right|}}{{{r^2}}}\)
+ Điện trường tổng hợp tại M: \(\overrightarrow {{E_M}} = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} + ... + \overrightarrow {{E_n}} \)
+ Điện trường tại M triệt tiêu khi: \(\overrightarrow {{E_M}} = 0\)
* Trường hợp: \(\overrightarrow {{E_M}} = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} = 0 \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \,\,\left( 1 \right)\\{E_1} = {E_2}\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
- Nếu \({q_1};{q_2}\) cùng dấu, để \(\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \) thì M nằm trong \({q_1};{q_2}\)
- Nếu \({q_1};{q_2}\) trái dấu, để \(\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \) thì M nằm ngoài \({q_1};{q_2}\)
Và M nằm gần điện tích có độ lớn nhỏ hơn.
Lời giải chi tiết:
Giả sử \({q_1}\) đặt tại O và \({q_2}\) đặt tại A.
Điện trường tại điểm M sinh ra bởi \({q_1} < 0\) có độ lớn là:
\({E_1} = k.\dfrac{{\left| {{q_1}} \right|}}{{O{M^2}}}\)
Điện trường tại điểm M sinh ra bởi \({q_2} > 0\) có độ lớn là:
\({E_2} = k.\dfrac{{\left| {{q_2}} \right|}}{{M{A^2}}}\)
Cường độ điện trường tổng hợp tại M:
\(\overrightarrow {{E_M}} = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} = 0 \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \,\,\left( 1 \right)\\{E_1} = {E_2}\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ \begin{array}{l}OM - AM = OA\\\dfrac{{O{M^2}}}{{A{M^2}}} = \dfrac{{\left| {{q_1}} \right|}}{{\left| {{q_2}} \right|}} = \dfrac{9}{4}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}OM - AM = 20cm\\\dfrac{{OM}}{{AM}} = \dfrac{3}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}OM = 60cm\\AM = 40cm\end{array} \right.\)
Chọn D.