Câu hỏi:

Tập hợp tất cả các số phức thỏa mãn \({z^2} = {\left| z \right|^2}\) là:

  • A \(\mathbb{R}\)      
  • B \(\mathbb{Z}\)      
  • C \(\mathbb{C}\)
  • D \(\mathbb{Q}\)

Phương pháp giải:

- Sử dụng phương pháp lấy môđun hai vế.

- Áp dụng công thức \(\left| {{z^2}} \right| = {\left| z \right|^2}\).

Lời giải chi tiết:

Gọi số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\), theo bài ra ta có:

\(\begin{array}{l}{a^2} - {b^2} + 2abi = {a^2} + {b^2}\\ \Leftrightarrow 2{b^2} = 2abi\\ \Leftrightarrow 2b\left( {b - ai} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2b = 0\\b - ai = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}b = 0\\a = b = 0\end{array} \right.\end{array}\)

Vậy tập hợp các số phức thỏa mãn yêu câu bài toán là các số phức có phần ảo bằng \(0\) và số \(0\), chính là tập \(\mathbb{R}\).

Chọn A.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay