Câu hỏi:
Cho hình chóp S.ABC có \(SA \bot \left( {SBC} \right)\). Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Mệnh đề nào sai trong các mệnh đề sau?
Phương pháp giải:
Sử dụng định lí: \(\left\{ \begin{array}{l}d \bot a\\d \bot b\\a \cap b \subset \left( P \right)\end{array} \right. \Rightarrow d \bot \left( P \right)\).
Lời giải chi tiết:
Gọi \(M\) là giao điểm của \(AK\) và \(BC\), ta có \(AM \bot BC\).
\(\left\{ \begin{array}{l}BC \bot AM\\BC \bot SA\,\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right)\).
\( \Rightarrow BC \bot SM \Rightarrow SM\) là đường cao của \(\Delta SBC\), do đó \(K \in SM\).
Suy ra SH, AK và BC đồng quy tại M nên đáp án D đúng.
Mà \(BC \bot \left( {SAM} \right)\,\,\left( {cmt} \right),\,\,\left( {SAM} \right) \equiv \left( {SAH} \right)\) nên \(BC \bot \left( {SAH} \right)\), suy ra đáp án A đúng.
Trong \(\left( {ABC} \right)\) kéo dài BK cắt AC tại P, trong (SBC) kéo dài BH cắt SC tại N.
Ta có: \(\left\{ \begin{array}{l}BP \bot AC\\BP \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BP \bot \left( {SAC} \right)\) \( \Rightarrow BP \bot SC\).
Suy ra \(\left\{ \begin{array}{l}SC \bot BP\\SC \bot BN\end{array} \right. \Rightarrow SC \bot \left( {BPN} \right)\), mà \(HK \subset \left( {BPN} \right) \Rightarrow HK \bot SC\).
Mặt khác \(HK \subset \left( {SAM} \right) \Rightarrow HK \bot BC\).
Nên \(HK \bot \left( {SBC} \right)\), do đó đáp án B đúng.
Chọn C.