Câu hỏi:

Cho số phức z thỏa mãn \(\dfrac{{\left( { - 1 + i} \right)z + 2}}{{1 - 2i}} = 2 + 3i\). Số phức liên hợp của z là \(\overline z  = a + bi\) với \(a,\,\,b \in \mathbb{R}\).  Giá trị của \(a + b\) bằng:

  • A \( - 1\).
  • B \( - 12.\)
  • C \( - 6\).
  • D \( 1\).

Phương pháp giải:

- Tìm số phức z bằng MTCT rồi suy ra \(\overline z \): Số phức \(z = a + bi\) có số phức liên hợp \(\overline z  = a - bi\).

- Xác định các hệ số \(a,\,\,b\) và tính tổng \(a + b\).

Lời giải chi tiết:

Ta có \(\dfrac{{\left( { - 1 + i} \right)z + 2}}{{1 - 2i}} = 2 + 3i \Rightarrow z = \dfrac{{\left( {2 + 3i} \right)\left( {1 - 2i} \right) - 2}}{{ - 1 + i}} =  - \dfrac{7}{2} - \dfrac{5}{2}i\)

\(\begin{array}{l} \Rightarrow \overline z  =  - \dfrac{7}{2} + \dfrac{5}{2}i\\ \Rightarrow a =  - \dfrac{7}{2};\,\,b = \dfrac{5}{2}\end{array}\)

Vậy \(a + b =  - \dfrac{7}{2} + \dfrac{5}{2} =  - 1.\)

Chọn A.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay