Câu hỏi:

Cho một tứ diện đều \(S.ABC\) có chiều cao h. Ở ba góc của tứ diện, người ta cắt đi các tứ diện đều có chiều cao x để khối đa diện còn lại có thể tích bằng một nửa thể tích khối tứ diện đều ban đầu. Tìm x.

  • A \(x = \dfrac{h}{{\sqrt[3]{2}}}\).
  • B \(x = \dfrac{h}{{\sqrt[3]{4}}}\).
  • C \(x = \dfrac{h}{{\sqrt[3]{3}}}\).
  • D \(x = \dfrac{h}{{\sqrt[3]{6}}}\).

Phương pháp giải:

Chiều cao của khối tứ diện đều cạnh a là: \(h = \dfrac{{a\sqrt 6 }}{3}\)

Thể tích của khối tứ diện đều cạnh a là: \(V = \dfrac{{{a^3}\sqrt 2 }}{{12}}\)

Lời giải chi tiết:

Tứ diện đều .. có chiều cao h \( \Rightarrow \) Độ dài cạnh của tứ diện \(S.ABC\) là: \(\dfrac{{3h}}{{\sqrt 6 }} = \dfrac{{h\sqrt 6 }}{2}\)

\( \Rightarrow \) Thể tích của khối tứ diện \(S.ABC\) là: \({V_{S.ABC}} = \dfrac{{{{\left( {\dfrac{{h\sqrt 6 }}{2}} \right)}^3}\sqrt 2 }}{{12}} = \dfrac{{{h^3}.6\sqrt 6 .\sqrt 2 }}{{8.12}} = \dfrac{{{h^3}\sqrt 3 }}{8}\)

Tổng thể tích của ba khối tứ diện đều bị cắt đi là: \({V_0} = 3.\dfrac{{{x^3}\sqrt 3 }}{8}\)

Vì thể tích phần còn lại bằng một nửa thể tích khối tứ diện đều ban đầu nên, ta có: \(\dfrac{{3{x^3}\sqrt 3 }}{8} = \dfrac{1}{2}.\dfrac{{{h^3}\sqrt 3 }}{8} \Leftrightarrow 6{x^3} = {h^3} \Leftrightarrow x = \dfrac{h}{{\sqrt[3]{6}}}\)

Chọn D.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay