Môn Toán - Lớp 12
40 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Hỏi hàm số \(y = f\left( x \right)\)đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\) tại điểm \({x_0}\) nào dưới đây?
Phương pháp giải:
Lập BBT của hàm số trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\), từ đó đưa ra đánh giá điểm mà hàm số đạt GTNN.
Lời giải chi tiết:
Dựa vào đồ thị hàm số \(f'\left( x \right)\) ta thấy: \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\).
Ta có BBT như sau:

Vậy hàm số \(y = f\left( x \right)\)đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\)tại điểm \({x_0} = 3.\)
Chọn: D.