Câu hỏi:

Cho \(A = {{2x} \over {x + 3\sqrt x  + 2}} + {{5\sqrt x  + 1} \over {x + 4\sqrt x  + 3}} + {{\sqrt x  + 10} \over {x + 5\sqrt x  + 6}}\)  với \(x \ge 0\)

Chứng minh rằng giá trị của \(A\) không phụ thuộc vào biến số \(x.\)

  • A \(A=1\)
  • B \(A=2\)
  • C \(A=3\)
  • D \(A=4\)

Phương pháp giải:

Quy đồng mẫu các phân thức, biến đổi và rút gọn biểu thức \(A.\) Chứng minh \(A = const.\)

Lời giải chi tiết:

\(\begin{array}{l}A = \frac{{2x}}{{x + 3\sqrt x  + 2}} + \frac{{5\sqrt x  + 1}}{{x + 4\sqrt x  + 3}} + \frac{{\sqrt x  + 10}}{{x + 5\sqrt x  + 6}}\\ = \frac{{2x}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)}} + \frac{{5\sqrt x  + 1}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 3} \right)}} + \frac{{\sqrt x  + 10}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}}\end{array}\)

\(\begin{array}{l} = \frac{{2x\left( {\sqrt x  + 3} \right) + \left( {5\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right) + \left( {\sqrt x  + 10} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}}\\ = \frac{{2x\sqrt x  + 6x + 5x + 11\sqrt x  + 2 + x + 11\sqrt x  + 10}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}} = \frac{{2x\sqrt x  + 12x + 22\sqrt x  + 12}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}}\\ = \frac{{2x\sqrt x  + 2x + 10x + 10\sqrt x  + 12\sqrt x  + 12}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}}\\ = \frac{{2x\left( {\sqrt x  + 1} \right) + 10\sqrt x \left( {\sqrt x  + 1} \right) + 12\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}}\\ = \frac{{\left( {\sqrt x  + 1} \right)\left( {2x + 10\sqrt x  + 12} \right)}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}} = \frac{{2\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  + 2} \right)\left( {\sqrt x  + 3} \right)}} = 2.\end{array}\)

Vậy giá trị của \(A\)  không phụ thuộc vào biến \(x.\)


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay