Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, có \(AB = 2a,\) \(AD = DC = a,\) \(SA = a\)  và \(SA \bot \left( {ABCD} \right)\). Tan của góc giữa hai mặt phẳng \(\left( {SBC} \right)\)và \(\left( {ABCD} \right)\) là:

  • A \(\frac{1}{{\sqrt 3 }}\)
  • B \(\sqrt 3 \)
  • C \(\sqrt 2 \)
  • D \(\frac{1}{{\sqrt 2 }}\)

Phương pháp giải:

Chứng minh SC và AC cùng vuông góc với giao tuyến BC.

Lời giải chi tiết:

Xét tam giác \(CE = a = \frac{1}{2}AB \Rightarrow \Delta ACB\)vuông tại C

(trung tuyến ứng với 1 cạnh bằng nửa cạnh ấy)

Ta có: \(\left. \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right\} \Rightarrow BC \bot \left( {SAC} \right) \Rightarrow BC \bot SC\)

\(\begin{array}{l}\left. \begin{array}{l}\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\\SC \bot BC\\AC \bot BC\end{array} \right\}\\ \Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = \widehat {SCA}\end{array}\)

(vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow \Delta SAC\)vuông tại A \( \Rightarrow \widehat {SCA} < {90^0}\))

Xét tam giác vuông ACD có: \(AC = \sqrt {A{D^2} + C{D^2}}  = a\sqrt 2 \)

Xét tam giác vuông SAC có: \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\)

Chọn D.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay