Câu hỏi:

Cho các số phức zw thỏa mãn \(\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i\). Tìm GTLN của \(T = \left| {w + i} \right|\).

  • A \(\frac{{\sqrt 2 }}{2}\).                      
  • B \(\frac{{3\sqrt 2 }}{2}\).                    
  • C \(2\).                 
  • D \(\frac{1}{2}\).

Phương pháp giải:

Sử dụng BĐT \(\left| {{z_1} + {z_3}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|\).

Lời giải chi tiết:

Dễ dàng kiểm tra \(z = 0\) không thỏa mãn \(\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i\)

Ta có: \(\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i \Leftrightarrow \frac{z}{{w - 1}} = \left( {3 - i} \right)\left| z \right| + i - 1 \Leftrightarrow \frac{z}{{w - 1}} = \left( {3\left| z \right| - 1} \right) + \left( {1 - \left| z \right|} \right)i\)\( \Rightarrow \left| {\frac{z}{{w - 1}}} \right| = \sqrt {10{{\left| z \right|}^2} - 8\left| z \right| + 2} \)\( \Rightarrow \left| {w - 1} \right| = \sqrt {\frac{{{{\left| z \right|}^2}}}{{10{{\left| z \right|}^2} - 8\left| z \right| + 2}}} \)

Nhận xét: \(T = \left| {w + i} \right| \le \left| {w - 1} \right| + \left| {1 + i} \right| = \frac{1}{{\sqrt {\frac{2}{{{{\left| z \right|}^2}}} - \frac{8}{{\left| z \right|}} + 10} }} + \sqrt 2  = \frac{1}{{\sqrt {2{{\left( {\frac{1}{{\left| z \right|}} - 2} \right)}^2} + 2} }} + \sqrt 2  \le \frac{{3\sqrt 2 }}{2}\)

Dấu “=” xảy ra khi và chỉ khỉ \(\left\{ \begin{array}{l}\left| z \right| = \frac{1}{2}\\w - 1 = k\left( {1 + i} \right)\\\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i\end{array} \right.,\left( {k > 0} \right) \Leftrightarrow \left\{ \begin{array}{l}z = \frac{1}{2}i\\w = \frac{3}{2} + \frac{1}{2}i\end{array} \right.\)

Vậy, \(\max T = \frac{{3\sqrt 2 }}{2}\).

Chọn: B


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay