Trả lời câu hỏi 1 trang 82 SGK Hình học 12Trong không gian Oxyz cho... Quảng cáo
Đề bài Trong không gian \(Oxyz\) cho điểm \({M_0}\left( {1;2;3} \right)\) và hai điểm \(M_1\left( {1 + t;2 + t;3 + t} \right)\), \({M_2}\left( {1 + 2t;2 + 2t;3 + 2t} \right)\) di động với tham số \(t\). Hãy chứng tỏ ba điểm \({M_0},{M_1},{M_2}\) luôn thẳng hàng. Video hướng dẫn giải Phương pháp giải - Xem chi tiết Ba điểm \({M_0},{M_1},{M_2}\) thẳng hàng nếu hai trong ba véc tơ \(\overrightarrow {{M_0}{M_1}} ,\overrightarrow {{M_0}{M_2}} ,\overrightarrow {{M_1}{M_2}} \) cùng phương. Do đó chỉ cần kiểm tra hai véc tơ bất kì cùng phương, sử dụng lý thuyết \(\overrightarrow {{M_0}{M_1}} ,\overrightarrow {{M_0}{M_2}} \) cùng phương nếu tồn tại một số thực \(k\) sao cho \(\overrightarrow {{M_0}{M_1}} = k\overrightarrow {{M_0}{M_2}} \). Lời giải chi tiết \(\eqalign{ Do đó ba điểm \({M_0},{M_1},{M_2}\) luôn thẳng hàng. Loigiaihay.com
Quảng cáo
|