Câu 5.32 trang 184 sách bài tập Đại số và Giải tích 11 Nâng cao

Tính đạo hàm đến cấp đã chỉ ra của các hàm số sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm đến cấp đã chỉ ra của các hàm số sau

LG a

\(y = x\sin 2x\,\,\,\,\,\left( {y''} \right)\)      

Lời giải chi tiết:

\(4\left( {\cos 2x - x\sin 2x} \right)\)     

LG b

\(y = {\cos ^2}x\,\,\,\,\,\,\left( {y'''} \right)\)

Lời giải chi tiết:

\(4\sin 2x\)

LG c

\(y = {x^4} - 3{x^3} + {x^2} - 1\,\,\,\,\,\,\left( {{y^{\left( n \right)}}} \right)\)

Lời giải chi tiết:

\(y' = 4{x^3} - 9{x^2} + 2x;\,y'' = 12{x^2} - 18x + 2;\)

\(y''' = 24x - 18,{y^{\left( 4 \right)}} = 24,{y^{\left( n \right)}} = 0\,\,\,\,\left( {n \ge 5} \right).\)

LG d

\(y = {1 \over {ax + b}}\)  (a,b là các hằng số, \(a \ne 0,{y^{\left( n \right)}}\))

Lời giải chi tiết:

 \({{{{\left( { - 1} \right)}^n}n!.{a^n}} \over {{{\left( {ax + b} \right)}^{ n+ 1}}}}\)

LG e

\(y=\sin x, \;{y^{\left( n \right)}}\)) 

Lời giải chi tiết:

 ta có

\(\eqalign{& y' = \cos x = \sin \left( {x + {\pi  \over 2}} \right)  \cr& y'' = \cos \left( {x + {\pi  \over 2}} \right) = \sin \left( {x + {{2\pi } \over 2}} \right)  \cr& y''' = \cos \left( {x + {{2\pi } \over 2}} \right) = \sin \left( {x + {{3\pi } \over 2}} \right) \cr} \)

Bằng phương pháp quy nạp, dễ dàng chứng minh được

            \({y^{\left( n \right)}} = {\left( {\sin x} \right)^{\left( n \right)}} = \sin \left( {x + {{n\pi } \over 2}} \right)\)

LG f

\(y=\cos x, \;{y^{\left( n \right)}}\)) 

Lời giải chi tiết:

 Chứng minh tương tự câu e), ta được

               \({\left( {\cos x} \right)^{\left( n \right)}} = \cos \left( {x + {{n\pi } \over 2}} \right)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close