Giải bài 3 trang 84 SGK Giải tích 12

Giải các phương trình logarit...

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình logarit

LG a

a) \({{\log_3}\left( {5x{\rm{ }} + {\rm{ }}3} \right){\rm{ }} = {\rm{ }}{\log_3}\left( {7x{\rm{ }} + {\rm{ }}5} \right)}\)

Phương pháp giải:

+) Tìm điều kiện xác định.

+) Đưa về cùng cơ số: \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l} f\left( x \right) > 0\\ g\left( x \right) > 0\\ f\left( x \right) = g\left( x \right)\end{array} \right.\)

Lời giải chi tiết:

\(\displaystyle {{\log_3}\left( {5x{\rm{ }} + {\rm{ }}3} \right){\rm{ }} = {\rm{ }}{\log_3}\left( {7x{\rm{ }} + {\rm{ }}5} \right)}\) (1)

\(DK:\left\{ \begin{array}{l}
5x + 3 > 0\\
7x + 5 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > - \dfrac{3}{5}\\
x > - \dfrac{5}{7}
\end{array} \right. \) \(\Leftrightarrow x > - \dfrac{3}{5}\)

TXĐ: \(\displaystyle D = \left( {{{ - 3} \over 5}, + \infty } \right)\)

Khi đó: (1) \(\displaystyle \Rightarrow 5x + 3 = 7x + 5 \) \(\displaystyle ⇔2x=-2 ⇔ x = -1\) (loại)

Vậy phương trình (1) vô nghiệm.

LG b

b) \({\log \left( {x{\rm{ }}-{\rm{ }}1} \right){\rm{ }}-{\rm{ }}\log \left( {2x{\rm{ }}-{\rm{ }}11} \right){\rm{ }} = {\rm{ }}\log {\rm{ }}2}\)

Lời giải chi tiết:

\(\displaystyle {\log\left( {x{\rm{ }}-{\rm{ }}1} \right){\rm{ }}-{\rm{ }}\log\left( {2x{\rm{ }}-{\rm{ }}11} \right){\rm{ }} = {\rm{ }}\log{\rm{ }}2}\) (2)

\(DK:\left\{ \begin{array}{l}
x - 1 > 0\\
2x - 11 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > 1\\
x > \dfrac{{11}}{2}
\end{array} \right. \) \(\Leftrightarrow x > \dfrac{{11}}{2}\)

TXĐ: \(\displaystyle D = \left( {\dfrac{{11}}{2}; + \infty } \right).\)

Khi đó: \(\displaystyle (2) \Rightarrow \log {{x - 1} \over {2x - 11}} = \log 2\) \(\displaystyle \Leftrightarrow {{x - 1} \over {2x - 11}} = 2\) \(\displaystyle \Rightarrow x - 1 = 4x - 22  \Leftrightarrow 3x=21\) \(\displaystyle \Leftrightarrow x = 7 (TM)\)

Vậy phương trình có nghiệm là \(\displaystyle x = 7.\)

LG c

c) \({{\log_2}\left( {x{\rm{ }}-{\rm{ }}5} \right){\rm{ }} + {\rm{ }}{\log_2}\left( {x{\rm{ }} + {\rm{ }}2} \right){\rm{ }} = {\rm{ }}3}\)

Lời giải chi tiết:

\(\displaystyle {{\log_2}\left( {x{\rm{ }}-{\rm{ }}5} \right){\rm{ }} + {\rm{ }}{\log_2}\left( {x{\rm{ }} + {\rm{ }}2} \right){\rm{ }} = {\rm{ }}3}\) (3)

\(DK:\left\{ \begin{array}{l}
x - 5 > 0\\
x + 2 > 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x > 5\\
x > - 2
\end{array} \right. \Leftrightarrow x > 5\)

TXĐ: \(\displaystyle (5; +∞)\)

Khi đó:

\(\displaystyle (3) \, \Leftrightarrow {\log _2}[(x - 5)(x + 2)]=3\)

\(\displaystyle \Leftrightarrow \left( {x - 5} \right)(x + 2) = 2^3 \)

\( \Leftrightarrow {x^2} - 3x - 10 = 8\)

\(\displaystyle \Leftrightarrow {x^2} - 3x - 18 = 0  \\ \Leftrightarrow (x-6)(x+3)=0 \\ \Leftrightarrow \left[ \matrix{
x - 6=0 \hfill \cr 
x + 3=0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 6 \, \, (tm) \hfill \cr 
x = - 3 \, \,(ktm) \hfill \cr} \right.\)

Vậy phương trình có nghiệm \(\displaystyle x = 6\)

LG d

d) \({\log {\rm{ }}\left( {{x^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}7} \right){\rm{ }} = {\rm{ }}\log {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}3} \right)}\)

Lời giải chi tiết:

\(\displaystyle {\log_{\rm{ }}\left( {{x^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}7} \right){\rm{ }} = {\rm{ }}\log{\rm{ }}\left( {x{\rm{ }}-{\rm{ }}3} \right)}\) (4)

\(DK:\left\{ \begin{array}{l}
{x^2} - 6x + 7 > 0\\
x - 3 > 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x > 3 + \sqrt 2 \\
x < 3 - \sqrt 2
\end{array} \right.\\
x > 3
\end{array} \right.\) \( \Leftrightarrow x > 3 + \sqrt 2 \)

TXĐ: \(\displaystyle D = (3 + \sqrt 2 , + \infty )\)

Khi đó:

\(\displaystyle \begin{array}{l}
\left( 4 \right) \Leftrightarrow {x^2} - 6x + 7 = x - 3\\
\Leftrightarrow {x^2} - 7x + 10 = 0\\
\Leftrightarrow \left( {x - 5} \right)\left( {x - 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 5 = 0\\
x - 2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 5\;\;\left( {tm} \right)\\
x = 2\;\;\left( {ktm} \right)
\end{array} \right..
\end{array}\)

Vậy phương trình có nghiệm là \(\displaystyle x = 5\).

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close