🔥 2K8 CƠ HỘI CUỐI T4! ĐẶT CHỖ SUN 2026 - LUYỆN THI TN THPT - ĐGNL - ĐGTD

🍀 CHỈ CÒN 100 SLOTS ƯU ĐÃI 70%‼️

Chỉ còn 4 ngày
Xem chi tiết

Giải bài 2 trang 84 SGK Giải tích 12

Giải các phương trình mũ:

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình mũ:

LG a

a) 32x1+32x=108;

Phương pháp giải:

+) Sử dụng các công thức cơ bản của hàm lũy thừa, biến đổi phương trình về các dạng cơ bản sau đó giải phương trình.

+) Đưa phương trình về dạng: af(x)=ag(x)f(x)=g(x).

+) Giải các phương trình bằng phương pháp đổi biến.

+) Khi đổi biến nhớ đặt điều kiện cho biến mới.

+) Giải phương trình tìm biến mới, đối chiếu với điều kiện đã đặt. Sau đó quay lại giải phương trình tìm ẩn x ban đầu.

Lời giải chi tiết:

32x1+32x=10813.32x+32x=10843.32x=10832x=8132x=342x=4x=2.

Vậy phương trình có nghiệm x=2.

LG b

b) 2x+1+2x1+2x=28;

Lời giải chi tiết:

2x+1+2x1+2x=282.2x+12.2x+2x=2872.2x=282x=82x=23x=3.

Vậy phương trình có nghiệm  x=3.

LG c

c) 64x8x56=0;

Lời giải chi tiết:

c)64x8x56=0(8x)28x56=0.

Đặt 8x=t(t>0). Khi đó ta có:
Ptt2t56=0(t8)(t+7)=0[t8=0t+7=0[t=8(tm)t=7(ktm).8x=8x=1.
Vậy phương trình có nghiệm x=1.

LG d

d) 3.4x2.6x=9x.

Phương pháp giải:

Chia cả 2 vế của pt cho 9x>0.

Lời giải chi tiết:

PT3.4x2.6x9x=0

Chia cả 2 vế của pt cho 9x>0 ta được:

3.4x9x2.6x9x1=03.(49)x2.(69)x1=03.[(23)x]22.(23)x1=0

Đặt (23)x=t(t>0). Khi đó ta có:
pt3t22t1=0(3t+1)(t1)=0[3t+1=0t1=0[t=13(ktm)t=1(tm)(23)x=1x=0.
Vậy phương trình có nghiệm x=0.

 Loigiaihay.com

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close