Bài tập trắc nghiệm khách quan trang 214 SGK Giải tích 12 Nâng caoTrong các bài tập dưới đây, hãy chọn một phương án trong các phương án đã cho để để được khẳng định đúng Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Câu 24 Hàm số \(f(x) = {e^{{1 \over 3}{x^3} - 2{x^2} + 3x + 1}}\) (A) Đồng biến trên mỗi khoảng \((-∞, 1)\) và \((3, + ∞)\) (B) Nghịch biến trên mỗi khoảng \((-∞, 1)\) và \((3, + ∞)\) (C) Đồng biến trên khoảng \((-∞, 1)\) và nghịch biến trên khoảng \((3, + ∞)\) (D) Nghịch biến trên khoảng \((-∞, 1)\) và đồng biến trên khoảng \((3, + ∞)\) Lời giải chi tiết: Ta có: \(\eqalign{ Ta có bảng biến thiên:
Chọn (A) Câu 25 Hàm số f(x) = sin2x – 2sinx có giá trị nhỏ nhất là: (A) \( - {1 \over 2}\) (B) 0 (C) -1 (D) \( - {1 \over 3}\) Lời giải chi tiết: Đặt t = sin x; t ∈ [-1, 1] f(x) = g(t) = t2 – 2t g’ = 2t – 2 = 0 ⇔ t = 1 g( - 1) = 3 g(1) = -1 Vậy \(\mathop {\min }\limits_{x \in R} f(x) = - 1\) Chọn (C) Câu 26 Gọi (C) là đồ thị của hàm số \(y = \sqrt {{x^2} + x} \) . Khi đó (A) Đường thẳng y = x + 1 là tiệm cận xiên của (C) (khi \(x \to + \infty \) ) (B) Đường thẳng \(y = x + {1 \over 2}\) là tiệm cận xiên của (C) (khi \(x \to + \infty \) ) (C) Đường thẳng y = -x là tiệm cận xiên của (C) (khi \(x \to + \infty \) ) (D) Đồ thị (C) không có tiệm cận xiên (khi \(x \to + \infty \) ) Lời giải chi tiết: \(\eqalign{ Vậy \(y = x + {1 \over 2}\) là tiệm cận xiên của (C) khi \(x\to +∞\) Chọn B Câu 27 Đồ thị của hàm số y = x3 – x + 1 tiếp xúc với điểm (1, 1) với (A) Parabol y = 2x2 -1 (B) Parabol y = x2 (C) Parabol y = -x2 + 2x (D) Đường thẳng y = 2x + 1 Lời giải chi tiết: Xét f(x) = x3 – x + 1 ; g(x) = x2 Ta có: \(\left\{ \matrix{ Nên đồ thị hàm số y = x3 – x + 1 tiếp xúc với (P) y = x2 tại (1, 1) Chọn (B) Câu 28 Cho hai số dương a và b. Đặt \(\left\{ \matrix{ Khi đó: (A) X > Y (B) X < Y (C) X ≥ Y (D) X ≤ Y Lời giải chi tiết: Ta có: \(\eqalign{ Chọn (C) Câu 29 Cho hai số không âm a và b. Đặt \(\left\{ \matrix{ Khi đó: (A) X > Y (B) X < Y (C) X ≥ Y (D) X ≤ Y Lời giải chi tiết: Ta có: \(Y = {{{e^a} + {e^b}} \over 2} \ge \sqrt {{e^a}.{e^b}} = {e^{{{a + b} \over 2}}} = X\) Vậy chọn (D) Câu 30 Cho (C) là đồ thị của hàm số y = log2x. Ta có thể suy ra đồ thị của hàm số y = log22(x + 3) bằng cách tịnh tiến (C) theo vectơ: \(\eqalign{ Lời giải chi tiết: Ta có: log22(x + 3) = 1 + log2 (x + 3) y = log2x \(\to\) Tịnh tiến trái 3 đơn vị y = log2 (x + 3) \(\to\) Tịnh tiến lên trên 1 đơn vị \(\to\) y = 1 + log2 (x + 3) Chọn (C) Câu 31 Cho hàm số f(x) = log5(x2 + 1). Khi đó: (A) \(f'(1) = {1 \over {2\ln 5}}\) (B) \(f'(1) = {1 \over {\ln 5}}\) (C) \(f'(1) = {3 \over {2\ln 5}}\) (D) \(f'(1) = {2 \over {\ln 5}}\) Lời giải chi tiết: Ta có: \(f'(x) = {{2x} \over {{x^2} + 1}}.{1 \over {\ln 5}} \Rightarrow f'(1) = {1 \over {\ln 5}}\) Chọn (B) Câu 32 Biết rằng đồ thị của hàm số y = ax và đồ thị của hàm số y = logbx cắt nhau tại điểm \(\left( {\sqrt {{2^{ - 1}}} ;\sqrt 2 } \right)\). Khi đó (A) a > 1 và b > 1 (B) a > 1 và 0 < b < 1 (C) 0 < a < 1 và b > 1 (D) 0 < a < 1 và 0 < b < 1 Lời giải chi tiết: Ta có: \(\left\{ \matrix{ \(\Rightarrow \left\{ \matrix{ Chọn (B) Câu 33 Cho hàm số \(f(x) = {{2{x^4} + 3} \over {{x^2}}}\) . Khi đó (A) \(\int {f(x)dx = {{2{x^3}} \over 3}} - {3 \over x} + C\) (B) \(\int {f(x)dx = {{2{x^3}} \over 3}} + {3 \over x} + C\) (C) \(\int {f(x)dx = 2{x^3}} - {3 \over x} + C\) (D)\(\int {f(x)dx = {{2{x^3}} \over 3}} + {3 \over {2x}} + C\) Lời giải chi tiết: Ta có: \(\int {f(x)dx = \int {(2{x^2} + {3 \over {{x^2}}})dx = {{2{x^3}} \over 3} - {3 \over x} + C} } \) Chọn (A) Câu 34 Đẳng thức \(\int\limits_0^a {\cos (x + {a^2})dx = sina} \) xảy ra nếu: \((A) \;a – π\) \(\eqalign{ Lời giải chi tiết: Ta có: \(\eqalign{ Với \(a = \sqrt {2\pi } \Rightarrow \sin (\sqrt {2\pi } + 2\pi ) = \sin 2\pi + \sin \sqrt {2\pi } \) \( \Leftrightarrow \sin \sqrt {2\pi } = \sin \sqrt {2\pi } \) Chọn (D) Câu 35 Gọi S là tập hợp các số nguyên dương k thỏa mãn điều kiện: \(\int\limits_1^e {\ln {k \over x}} dx\,\, < e - 2\) Khi đó: (A) S = {1} (B) S = {2} (C) S = {1, 2} (D) S = Ø Lời giải chi tiết: Ta có: \(\int\limits_1^e {\ln {k \over x}} dx = \int\limits_1^e {(\ln k - \ln x)dx = (e - 1)\ln k - \int\limits_1^e {\ln xdx} }\) Đặt \(\left\{ \matrix{ Do đó: \(\int\limits_1^e {\ln xdx = x\ln x|_1^e} - \int\limits_1^e {dx} = e - (e - 1) = 1\) Vậy: \(\eqalign{ Chọn (C) Câu 36 Cho số phức z tùy ý. Xét các số phức \(\alpha = {z^2} + {\left( {\overline z } \right)^2};\,\beta = z.\overline z + i\left( {z - \overline z } \right).\) Khi đó: A. α là số thực, β là số thực. B. α là số thực, β là số ảo. C. α là số ảo, β là số thực. D. α là số ảo, β là số ảo. Lời giải chi tiết: Giả sử z = a+bi, ta có: \(\alpha = {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} = 2{a^2}-2b^2\) Vậy α ∈ R \(\beta = \left( {a + bi} \right)\left( {a - bi} \right) + i\left( {a + bi - a + bi} \right)\) \(= {a^2} + {b^2} - 2b \in\mathbb R\) Vậy chọn A. Câu 37 Cho số phức z tùy ý. Xét các số phức \(\left\{ \matrix{ Khi đó: (A) α là số thực, β là số thực (B) α là số thực, β là số ảo (C) α là số ảo, β là số thực (D) α là số ảo, β là số ảo Lời giải chi tiết: Ta có: \({i^{2005}} = i \) \(\Rightarrow \alpha = \frac{{{i^{2005}} - i}}{{\overline z - 1}} - {z^2} + {\left( {\overline z } \right)^2} \) \(= \frac{{i - i}}{{z - 1}} - {z^2} + {\left( {\overline z } \right)^2} \) \(= 0 - {z^2} + {\left( {\overline z } \right)^2}\) \( = {(\overline z )^2} - {z^2} \) \(= (\overline z - z)(\overline z + z)\) \( = \left( {a - bi - a - bi} \right)\left( {a - bi + a + bi} \right) \) \(= - 2bi.2a = - 4abi\) là số ảo. \(\begin{array}{l} \( = {z^2} + z + {\overline z ^2} + \overline z \) \(= {(z + \overline z )^2} - 2z.\overline z + (z + \overline z )\) \( = {\left( {a + bi + a - bi} \right)^2} \) \(- 2\left( {{a^2} + {b^2}} \right) \) \(+ \left( {a + bi + a - bi} \right) \) \(= 4{a^2} - 2\left( {{a^2} + {b^2}} \right) + 2a\) \( = 2{a^2} - 2{b^2} + 2a\) là số thực Chọn (C) Câu 38 Nếu môđun của số phức z bằng r (r > 0) thì môdun của số phức (1 – i)2z bằng: (A) 4r (B) 2r (C) \(r\sqrt 2 \) (D) r Lời giải chi tiết: \(\begin{array}{l} Chọn (B) Loigiaihay.com Quảng cáo
|