Giải bài 3 trang 113 SGK Giải tích 12

Sử dụng phương pháp biến đổi số, tính tích phân

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Sử dụng phương pháp đổi biến số, tính tích phân:

LG a

\(\int_{0}^{3}\frac{x^{2}}{(1+x)^{\frac{3}{2}}}dx\) (Đặt \(u= x+1\)) 

Phương pháp giải:

Đặt \(u= x+1\) và sử dụng công thức nguyên hàm cỏ bản:

\(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\left( {\alpha  \ne  - 1} \right)\)

Lời giải chi tiết:

Đặt \(u= x+1 \Rightarrow  du =  dx\) và \(x = u - 1\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 1\\x = 3 \Rightarrow u = 4\end{array} \right.\)

\(\begin{array}{l}\int\limits_0^3 {\frac{{{x^2}}}{{{{\left( {1 + x} \right)}^{\frac{3}{2}}}}}dx} = \int\limits_1^4 {\frac{{{{\left( {u - 1} \right)}^2}}}{{{u^{\frac{3}{2}}}}}du} \\= \int\limits_1^4 {\frac{{{u^2} - 2u + 1}}{{{u^{\frac{3}{2}}}}}du} \\= \int\limits_1^4 {\left( {{u^{\frac{1}{2}}} - 2{u^{ - \frac{1}{2}}} + {u^{ - \frac{3}{2}}}} \right)du} \\ = \left. {\left( {\frac{{{u^{\frac{1}{2} + 1}}}}{{\frac{1}{2} + 1}} - 2.\frac{{{u^{ - \frac{1}{2} + 1}}}}{{ - \frac{1}{2} + 1}} + \frac{{{u^{ - \frac{3}{2} + 1}}}}{{ - \frac{3}{2} + 1}}} \right)} \right|_1^4\\= \left. {\left( {\frac{2}{3}{u^{\frac{3}{2}}} - 4{u^{\frac{1}{2}}} - 2{u^{ - \frac{1}{2}}}} \right)} \right|_1^4\\= - \frac{{11}}{3} - \left( { - \frac{{16}}{3}} \right) = \frac{5}{3}\end{array}\)

LG b

\(\int_{0}^{1}\sqrt{1-x^{2}}dx\) (Đặt \(x = sint\) )

Phương pháp giải:

Đặt \(x = sint\)

Sử dụng công thức hạ bậc: \({\cos ^2}\alpha  = \frac{{1 + \cos 2\alpha }}{2}\)

Sử dụng công thức nguyên hàm: \(\int {\cos \left( {ax + b} \right)dx}  = \frac{{\sin \left( {ax + b} \right)}}{a} + C\)

Lời giải chi tiết:

Đặt \(x = sint\), \(0<t<\frac{\pi}{2}\). Ta có: \(dx = costdt\)

và \(\sqrt{1-x^{2}}=\sqrt{1-sin^{2}t}\)\(= \sqrt{cos^{2}t}=\left | cost \right |= cos t.\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = \frac{\pi }{2}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {\sqrt {1 - {x^2}} dx} \\= \int\limits_0^{\frac{\pi }{2}} {\sqrt {1 - {{\sin }^2}t} \cos tdt} \\= \int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}tdt} = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \cos 2t} \right)dt} \\= \frac{1}{2}\left. {\left( {t + \frac{{\sin 2t}}{2}} \right)} \right|_0^{\frac{\pi }{2}}\\= \frac{1}{2}.\frac{\pi }{2} = \frac{\pi }{4}\end{array}\)

LG c

\(\int_{0}^{1}\dfrac{e^{x}(1+x)}{1+x.e^{x}}dx\) (Đặt \(u = 1 + x.{e^x}\))

Phương pháp giải:

Đặt \(u = 1 + x.{e^x}\).

Lời giải chi tiết:

Đặt: \(u= 1 + x.{e^x}\)

\(\Rightarrow du = 0+  \left( {{e^x} + x.{e^x}} \right)dx \)\(= {e^x}\left( {1 + x} \right)dx\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 1\\x = 1 \Rightarrow u = 1 + e\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {\frac{{{e^x}\left( {1 + x} \right)}}{{1 + x{e^x}}}dx} = \int\limits_1^{1 + e} {\frac{{du}}{u}} = \left. {\ln \left| u \right|} \right|_1^{1 + e}\\= \ln \left( {1 + e} \right) - \ln 1 = \ln \left( {1 + e} \right)\end{array}\)

LG d

\(\int_{0}^{\frac{a}{2}}\frac{1}{\sqrt{a^{2}-x^{2}}}dx\) (Đặt \(x= asint\))

Phương pháp giải:

Đặt \(x= asint\).

Lời giải chi tiết:

Đặt \(x = a\sin t \Rightarrow dx = a\cos tdt\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \frac{a}{2} \Rightarrow t = \frac{\pi }{6}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^{\frac{a}{2}} {\frac{1}{{\sqrt {{a^2} - {x^2}} }}dx} = \int\limits_0^{\frac{\pi }{6}} {\frac{{a\cos tdt}}{{\sqrt {{a^2} - {a^2}{{\sin }^2}t} }}} \\= \int\limits_0^{\frac{\pi }{6}} {\frac{{a\cos tdt}}{{a.\cos t}}} = \int\limits_0^{\frac{\pi }{6}} {dt} = \left. t \right|_0^{\frac{\pi }{6}} = \frac{\pi }{6}\end{array}\).

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close