Giải bài 1 trang 100 SGK Giải tích 12

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?

Quảng cáo

Đề bài

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?

a)  \(e^{-x}\) và \(-  e^{-x}\);        b) \(\sin 2x\) và \(\sin^2x\) 

c) \({\left( {1 - \frac{2}{x}} \right)^2}{e^x}\) và \(\left( {1 - \frac{4}{x}} \right){e^x}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng định nghĩa: Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) nếu \(F'(x)=f(x)\) với mọi \(x\) thuộc tập xác định.

+) Sử dụng các công thức tính đạo hàm của các hàm cơ bản: \( \left( {{e^u}} \right)' = u'{e^u};\;\;\left( {\sin u} \right)' = u'\cos u....\)

Lời giải chi tiết

a) \(e^{-x}\) và \(-  e^{-x}\) là nguyên hàm của nhau, vì:

\(({e^{ - x}})'= {e^{ - x}}\left( { - 1} \right)=  - {e^{ - x}}\)  và \(( - {e^{ - x}})' = \left( { - 1} \right)( - {e^{ - x}}) = {e^{ - x}}\)

b)  \(sin^2x\)   là nguyên hàm của \(sin2x\), vì:

\(\left( {si{n^2}x} \right)'{\rm{ }} = {\rm{ }}2sinx.\left( {sinx} \right)' \\= 2sinxcosx = sin2x\)

c) \(\left( {1 - \frac{4}{x}} \right){e^x}\) là một nguyên hàm của \({\left( {1 - \frac{2}{x}} \right)^2}{e^x}\) vì:

\({\left( {\left( {1 - \frac{4}{x}} \right){e^x}} \right)^\prime } = \frac{4}{{{x^2}}}{e^x} + \left( {1 - \frac{4}{x}} \right){e^x} = \left( {1 - \frac{4}{x} + \frac{4}{{{x^2}}}} \right){e^x} = {\left( {1 - \frac{2}{x}} \right)^2}{e^x}.\)

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close