Bài 8 trang 78 SGK Đại số 10 nâng cao

Giải và biện luận các phương trình

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các phương trình

LG a

\(\left( {m{\rm{ }} - {\rm{ }}1} \right){x^2} + {\rm{ }}3x{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

Lời giải chi tiết:

 \(\left( {m{\rm{ }} - {\rm{ }}1} \right){x^2} + {\rm{ }}3x{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

+ Với \(m = 1\), phương trình trở thành: \(3x - 1 = 0 \Leftrightarrow x = {1 \over 3}\)

+ Với \(m ≠ 1\), ta có: \(Δ = 9 + 4(m – 1) = 4m + 5\)

\(Δ <0 \Leftrightarrow 4m + 5 < 0\Leftrightarrow m <  - {5 \over 4}\) :  Phương trình vô nghiệm

\(Δ = 0 \Leftrightarrow 4m + 5 = 0\Leftrightarrow m =  - {5 \over 4}\) : Phương trình có nghiệm kép là:

\({x_1} = {x_2} =  - {b \over {2a}} \)\(= {{ - 3} \over {2(m - 1)}} = {{ - 3} \over {2( - {5 \over 4} - 1)}} = {2 \over 3}\)     

\(Δ > 0 \Leftrightarrow 4m + 5 > 0 \Leftrightarrow m >  - {5 \over 4}\) : Phương trình có hai nghiệm phân biệt là \(x _{1,2}= {{ - 3 \pm \sqrt {4m + 5} } \over {2(m - 1)}}\)

Vậy,

+) \(m = 1\) phương trình có nghiệm duy nhất \(x = \frac{1}{3}\)

+) \(m =  - \frac{5}{4}\) phương trình có nghiệm kép \(x = \frac{2}{3}\)

+) \(m <  - \frac{5}{4}\) phương trình vô nghiệm

+) \( - \frac{5}{4} < m \ne 1\) phương trình có hai nghiệm phân biệt \({x_{1,2}} = \frac{{ - 3 \pm \sqrt {4m + 5} }}{{2\left( {m - 1} \right)}}\).

LG b

\({x^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}m{\rm{ }} - {\rm{ }}3{\rm{ }} = {\rm{ }}0\)

Lời giải chi tiết:

\({x^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}m{\rm{ }} - {\rm{ }}3{\rm{ }} = {\rm{ }}0\)

Ta có: \(Δ’ = 4 – (m – 3) = 7 – m\)

+ \(Δ’ < 0  \Leftrightarrow 7 - m < 0⇔ m > 7\) : Phương trình vô nghiệm

+ \(Δ’= 0 \Leftrightarrow 7 - m = 0⇔ m = 7\) : Phương trình có nghiệm kép: \({x_1} = {x_2} =  - {b \over {2a}} = {4 \over 2} = 2\)

+ \(Δ’> 0 \Leftrightarrow 7 - m > 0⇔ m < 7\) : Phương trình có hai nghiệm phân biệt: \(x_{1,2} = 2 \pm \sqrt {7 - m} \)

Vậy,

+) \(m = 7\) phương trình có nghiệm kép \(x = 2\)

+) \(m > 7\) phương trình vô nghiệm

+) \(m < 7\) phương trình có hai nghiệm phân biệt \({x_{1,2}} = 2 \pm \sqrt {7 - m} \).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close