Bài 8 trang 10 SGK Toán 8 tập 2

Giải các phương trình:

Quảng cáo

Đề bài

Giải các phương trình:

a) \(4x - 20 = 0\);

b) \(2x + x + 12 = 0\);

c) \(x - 5 = 3 - x\);

d) \(7 - 3x = 9 - x\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Phương trình \(ax+b=0\) (với \(a\ne0\)) được giải như sau:

\(ax + b = 0 \Leftrightarrow  ax = -b  \Leftrightarrow  x = \dfrac{-b}{a}\)

Vậy phương trình có một nghiệm duy nhất là \(x=   \dfrac{-b}{a} \)

b, c, d) 

+) Quy tắc chuyển vế

Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

+) Quy tắc nhân với một số

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế phương trình với cùng một số khác \(0\).

Lời giải chi tiết

a) \(4x - 20 = 0 \)

\(\Leftrightarrow  4x = 20  \)

\( \Leftrightarrow x = \dfrac{20} {4}\)

\(\Leftrightarrow  x = 5\)

Vậy phương trình có nghiệm duy nhất \(x = 5\).

b) \(2x + x + 12 = 0\)

\( \Leftrightarrow  3x + 12 = 0\)

\( \Leftrightarrow 3x = -12\)

\( \Leftrightarrow x = \dfrac{{ - 12}}{3}\)

\( \Leftrightarrow x = - 4\)

Vậy phương trình đã cho có nghiệm duy nhất \(x = - 4\)

c) \(x - 5 = 3 - x\)

\( \Leftrightarrow  x + x = 3+5\)

\( \Leftrightarrow  2x = 8 \)

\( \Leftrightarrow x = \dfrac{8}{2}\)

\( \Leftrightarrow  x = 4\)

Vậy phương trình có nghiệm duy nhất \(x = 4\)

d) \(7 - 3x = 9 - x\)

\( \Leftrightarrow  -3x+x = 9 -7\)

\( \Leftrightarrow  -2x = 2\)

\( \Leftrightarrow x = \dfrac{2}{{ - 2}}\)

\( \Leftrightarrow  x = -1\)

Vậy phương trình có nghiệm duy nhất \(x = -1\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close