tuyensinh247

Bài 6 trang 9 SGK Toán 8 tập 2

Tính diện tích của hình thang ABCD (h.1) theo x bằng hai cách:

Quảng cáo

Đề bài

Tính diện tích của hình thang \(ABCD\) (h.1) theo \(x\) bằng hai cách:

1) Tính theo công thức \(S = BH \times (BC + DA) : 2\);

2) \(S = {S_{ABH}} + {S_{BCKH}} + {S_{CKD}}\) 

Sau đó sử dụng giả thiết \(S = 20\) để thu được hai phương trình tương đương với nhau. Trong hai phương trình ấy, có phương trình nào là phương trình bậc nhất không?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Phương trình có dạng \(ax+b=0\), với \(a\) và \(b\) là hai số đã cho và \(a\ne0\), được gọi là phương trình bậc nhất một ẩn.

Lời giải chi tiết

Gọi S là diện tích hình thang ABCD. 

1) Theo công thức

                    \(S =  \dfrac{BH(BC+DA)}{2}\)

Ta có: \(AD = AH + HK + KD\)

\(\Rightarrow AD = 7 + x + 4 = 11 + x\)

Có \(BH\bot HK, CK\bot HK\) (giả thiết)

Mà \(BC//HK\) (vì \(ABCD\) là hình thang)

Do đó \(BH\bot BC, CK\bot BC\)

Tứ giác \(BCKH\) có bốn góc vuông nên \(BCKH\) là hình chữ nhật

Mặt khác: \(BH=HK=x\) (giả thiết) nên \(BCKH\) là hình vuông

\( \Rightarrow BH = BC =CK=KH= x\)

Thay \(BH=x\), \(BC=x\), \(DA=11+x\) vào biểu thức tính \(S\) ta được:

\(S = \dfrac{{x\left( {x + 11 + x} \right)}}{2} = \dfrac{{x(11 + 2x)}}{2}\)\(\,=\dfrac{{11x + 2{x^2}}}{2}\) 

2) Ta có: 

\(\eqalign{
& S = {S_{ABH}} + {S_{BCKH}} + {S_{CKD}} \cr
& \,\,\,\,\, = {1 \over 2}BH.AH + BH.HK + {1 \over 2}CK.KD \cr
& \,\,\,\,\, = {1 \over 2}x.7 + x.x + {1 \over 2}.x.4 \cr
& \,\,\,\,\, = {7 \over 2}x + {x^2} + 2x \cr 
& \,\,\,\,\, =x^2+{11 \over 2}x \cr} \)

Vậy \(S = 20\) ta có hai phương trình: 

  \(\dfrac{{11x + 2{x^2}}}{2}= 20\)          (1)

  \( \dfrac{11}{2}x + x^2  = 20  \)       (2)

Hai phương trình trên tương đương và cả hai phương trình không có phương trình nào là phương trình bậc nhất.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close