Bài 7 trang 132 SGK Toán 8 tập 2

Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E.

Quảng cáo

Đề bài

Cho tam giác \(ABC\; (AB < AC)\). Tia phân giác của góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\), cắt \(AC\) ở \(E\). Chứng minh \(BD = CE\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng: Tính chất đường phân giác, tính chất hai tam giác đồng dạng.

Lời giải chi tiết

 

\(AK\) là đường phân giác của tam giác \(ABC\) (gt) nên

\(\dfrac{{KB}}{{AB}} = \dfrac{{KC}}{{AC}}\) (1) (tính chất đường phân giác của tam giác)

Vì \(MD // AK\)  (gt) nên:  

\(∆ABK  ∽ ∆DBM\) và \(∆ECM  ∽ ∆ACK\)

Do đó:

\(\dfrac{{KB}}{{AB}} = \dfrac{{BM}}{{BD}}\)   (2) và \( \dfrac{{CM}}{{CE}} = \dfrac{{KC}}{{AC}}\) (3) (tính chất hai tam giác đồng dạng)

Từ (1), (2) và (3) ta có: \(\dfrac{{BM}}{{BD}} = \dfrac{{CM}}{{CE}}\) (4)

Do \(BM = CM\) (vì \(M\) là trung điểm) nên từ (4) suy ra: \(BD = CE.\)

Loigiaihay.com

  • Bài 8 trang 132 SGK Toán 8 tập 2

    Giải bài 8 trang 132 SGK Toán 8 tập 2. Trên hình 151 cho thấy ta có thể xác định chiều rộng BB’ của khúc song bằng cách xét hai tam giác đồng dạng ABC và AB’C’.

  • Bài 9 trang 132 SGK Toán 8 tập 2

    Giải bài 9 trang 132 SGK Toán 8 tập 2. Cho tam giác ABC có AB < AC, D là một điểm nằm giữa A và C. Chứng minh rằng

  • Bài 10 trang 132 SGK Toán 8 tập 2

    Giải bài 10 trang 132 SGK Toán 8 tập 2. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 12 cm, AD = 16 cm, AA’ = 25 cm.

  • Bài 11 trang 132 SGK Toán 8 tập 2

    Giải bài 11 trang 132 SGK Toán 8 tập 2. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 20 cm, cạnh bên SA = 24cm.

  • Bài 6 trang 132 SGK Toán 8 tập 2

    Giải bài 6 trang 132 SGK Toán 8 tập 2. Cho tam giác ABC và đường trung tuyến BM. Trên đoạn thẳng BM lấy điểm D sao cho . Tia AD cắt BC ở K. Tìm tỉ số diện tích của tam giác ABK và tam giác ABC.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close