Bài 61 trang 92 SGK Toán 8 tập 2

Tứ giác ABCD có AB = 4cm, BC = 20 cm, CD = 25 cm, DA = 8cm, đường chéo BD = 10cm.

Quảng cáo

Đề bài

Tứ giác \(ABCD\) có \(AB = 4cm, BC = 20 cm\), \(CD = 25 cm, DA = 8cm\), đường chéo \(BD = 10cm\).

a) Nêu cách vẽ tứ giác \(ABCD\) có kích thước đã cho ở trên.

b) Các tam giác \(ABD\) và \(BDC\) có đồng dạng với nhau không? Vì sao?

c) Chứng minh rằng \(AB // CD\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng cách vẽ tam giác, dấu hiệu nhận biết hình thang, dấu hiệu nhận biết hai tam giác đồng dạng.

Lời giải chi tiết

a) Cách vẽ:

- Vẽ \(ΔBDC\):

   + Vẽ \(DC = 25cm\)

   + Vẽ cung tròn tâm \(D\) có bán kính \(10cm\) và cung tròn tâm \(C\) có bán kính \(20cm\). Giao điểm của hai cung tròn là \( B\).

- Vẽ điểm A: Vẽ cung tròn tâm \(B\) có bán kính \( 4cm\) và cung tròn tâm \(D\) có bán kính \( 8cm\). Giao điểm của hai cung tròn này là điểm \(A\). Nối các cạnh BD, BC, DA, BA. 

Vậy là ta đã vẽ được tứ giác \(ABCD\) thỏa mãn điều kiện đề bài.

b) Ta có: \(\dfrac{{AB}}{{BD}} = \dfrac{4}{{10}} = \dfrac{2}{5};\) \(\dfrac{{BD}}{{DC}} = \dfrac{{10}}{{25}} = \dfrac{2}{5};\) \(\dfrac{{AD}}{{BC}} = \dfrac{8}{{20}} = \dfrac{2}{5}\)

\( \Rightarrow \dfrac{{AB}}{{BD}} = \dfrac{{BD}}{{DC}} = \dfrac{{AD}}{{BC}}\)

\(\Rightarrow \Delta AB{\rm{D}} \backsim \Delta B{\rm{D}}C\left( {c - c - c} \right)\)

c) \(∆ABD∽ ∆BDC\) (chứng minh trên)

\(\Rightarrow \widehat {ABD} = \widehat {BDC}\), mà hai góc ở vị trí so le trong.

\(\Rightarrow AB // DC\) hay \(ABCD\) là hình thang.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close