Bài 52 trang 58 SGK Toán 8 tập 1

Chứng tỏ rằng với x≠0 và x≠±a (a là một số nguyên), giá trị của biểu thức là một số chẵn.

Quảng cáo

Đề bài

Chứng tỏ rằng với \(x \ne 0\) và \(x \ne  \pm a\) (\(a\) là một số nguyên), giá trị của biểu thức

 \(\left( {a - \dfrac{{{x^2} + {a^2}}}{{x + a}}} \right).\left( {\dfrac{{2a}}{x} - \dfrac{{4a}}{{x - a}}} \right)\)  là một số chẵn.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Tìm điều kiện xác định của phân thức là mẫu thức khác \(0\).

- Chứng tỏ biểu thức có giá trị dạng \(2k\) (\(k\) là một số nguyên)

Lời giải chi tiết

Điều kiện của biến để giá trị của biểu thức được xác định là : \(x \ne 0,x \ne  \pm a\) ( \(a\) là một số nguyên)

Ta có:

\(\eqalign{
& \left( {a - {{{x^2} + {a^2}} \over {x + a}}} \right).\left( {{{2a} \over x} - {{4a} \over {x - a}}} \right) \cr
& = {{a\left( {x + a} \right) - \left( {{x^2} + {a^2}} \right)} \over {x + a}}.{{2a\left( {x - a} \right) - 4a.x} \over {x\left( {x - a} \right)}} \cr
& = {{ax + {a^2} - {x^2} - {a^2}} \over {x + a}}.{{2ax - 2{a^2} - 4ax} \over {x\left( {x - a} \right)}} \cr
& = {{ax - {x^2}} \over {x + a}}.{{ - 2{a^2} - 2ax} \over {x\left( {x - a} \right)}} \cr
& = {{x\left( {a - x} \right)} \over {x + a}}.{{2a\left( { - a - x} \right)} \over {x\left( {x - a} \right)}} \cr
& = {{x\left( {a - x} \right).2a\left( { - a - x} \right)} \over {x\left( {x + a} \right)\left( {x - a} \right)}} \cr& = {{x\left[- {(x - a)} \right].[-2a\left( { x+a} \right)]} \over {x\left( {x + a} \right)\left( {x - a} \right)}} \cr
& = {{2ax\left( {x - a} \right)\left( {a + x} \right)} \over {x\left( {x + a} \right)\left( {x - a} \right)}} = 2a \cr} \)

Vì \(a\) là số nguyên nên \(2a\) là số chẵn.

Vậy giá trị của biểu thức đã cho là một số chẵn.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close