Bài 4 trang 39 SGK Đại số 10

Xét tính chẵn lẻ của hàm số

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Xét tính chẵn lẻ của hàm số: 

LG a

\(y = |x|\);  

Phương pháp giải:

Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = f\left( x \right)\).

Hàm số \(y = f(x)\) với tập xác định \(D \) gọi là hàm số lẻ nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = - f\left( x \right)\).

Lời giải chi tiết:

Tập xác định của \(y = f(x) = |x|\) là \(D = \mathbb R\).

\(∀x ∈\mathbb R \Rightarrow -x ∈\mathbb R\)  

\(f(- x) = |- x| = |x| = f(x)\)

Vậy hàm số \(y = |x|\) là hàm số chẵn.

LG b

 \(y = (x + 2)^2\)    

Phương pháp giải:

Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = f\left( x \right)\).

Hàm số \(y = f(x)\) với tập xác định \(D \) gọi là hàm số lẻ nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = - f\left( x \right)\).

Lời giải chi tiết:

Tập xác định của \(y = f(x) = (x + 2)^2\) là \(\mathbb R\).

\(\forall x ∈\mathbb R \Rightarrow-x ∈\mathbb R\)   

\( f(- x) = (- x + 2)^2 \)\( = x^2– 4x + 4 = (x - 2)^2 \)

\(≠(x+2)^2 =  f(x)\)

Mà \( - f(x) = -(x+2)^2\) nên

\(f(- x) =  (x - 2)^2 \) \(≠  -(x+2)^2 =- f(x)\)

Vậy hàm số \(y = (x + 2)^2\)  không chẵn, không lẻ.

LG c

\(y = x^3 + x\) ;

Phương pháp giải:

Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = f\left( x \right)\).

Hàm số \(y = f(x)\) với tập xác định \(D \) gọi là hàm số lẻ nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = - f\left( x \right)\).

Lời giải chi tiết:

Tập xác định: \(D =\mathbb R\), \(\forall x ∈ D \Rightarrow  -x ∈ D\)

\(f(– x) = (– x)^3 + (– x) = - x^3 - x \) \(= - (x^3+ x) = – f(x)\)

Vậy hàm số đã cho là hàm số lẻ.

LG d

\(y = x^2 + x + 1\).

Phương pháp giải:

Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = f\left( x \right)\).

Hàm số \(y = f(x)\) với tập xác định \(D \) gọi là hàm số lẻ nếu : \(\forall x \in D\) thì \( - x \in D\) và \(f\left( { - x} \right) = - f\left( x \right)\).

Lời giải chi tiết:

Tập xác định: \(D=\mathbb R\), \(\forall x\in D \Rightarrow -x\in D\)

\(f(-x)=(-x)^2+(-x)+1\) \(=x^2-x+1 \ne f(x)\)

Lại có \( - f\left( x \right) =  - \left( {{x^2} + x + 1} \right) \) \(=  - {x^2} - x - 1\)

Nên \(f(-x)=x^2-x+1 \) \(\ne - {x^2} - x - 1 = -f(x) \) 

Vậy hàm số không chẵn cũng không lẻ.

Loigiaihay.com

Quảng cáo
list
close
Gửi bài