Bài 37 trang 208 SGK giải tích 12 nâng cao

Với x,y nào thì số phức đó là số thực?

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm phần thực, phần ảo của

LG a

\({\left( {2 - 3i} \right)^3};\)

Phương pháp giải:

Sử dụng hằng đẳng thức \({\left( {A - B} \right)^3} = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)

Lời giải chi tiết:

\({\left( {2 - 3i} \right)^3} \) \( = {2^3} - {3.2^2}.3i + 3.2.{\left( {3i} \right)^2} - {\left( {3i} \right)^3}\) \( = 8 - 36i-54 + 27i =  - 46 - 9i\)

Vậy phần thực là \(-46\), phần ảo là \(-9\).

LG b

\({{3 + 2i} \over {1 - i}} + {{1 - i} \over {3 - 2i}}\,;\)

Lời giải chi tiết:

\(\eqalign{  & {{3 + 2i} \over {1 - i}} = {{\left( {3 + 2i} \right)\left( {1 + i} \right)} \over {1+1}} \cr & = \frac{{3 + 2i + 3i - 2}}{2}= {{1 + 5i} \over 2} \cr &= {1 \over 2} + {5 \over 2}i  \cr  & {{1 - i} \over {3 - 2i}} = {{\left( {1 - i} \right)\left( {3 + 2i} \right)} \over {3^2+2^2}} \cr & = \frac{{3 + 2i - 3i + 2}}{{13}}= {{5 - i} \over {13}}\cr & = {5 \over {13}} - {1 \over {13}}i \cr} \)

Do đó \({{3 + 2i} \over {1 - i}} + {{1 - i} \over {3 - 2i}}={1 \over 2} + {5 \over 2}i +{5 \over {13}} - {1 \over {13}}i \) \(= {{23} \over {26}} + {{63} \over {26}}i\)

Vậy phần thực là \({{23} \over {26}}\), phần ảo là \({{63} \over {26}}\)

LG c

\({\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\,\,\left( {x,y \in\mathbb R} \right).\)

Với x,y nào thì số phức đó là số thực?

Phương pháp giải:

Số phức z=a+bi là số thực khi b=0.

Lời giải chi tiết:

\({\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5 \) \( = {x^2} - {y^2} + 2xyi - 2x - 2iy + 5\) \(= {x^2} - {y^2} - 2x + 5 + 2y\left( {x - 1} \right)i\)

Vậy phần thực là \({x^2} - {y^2} - 2x + 5\), phần ảo là \(2y\left( {x - 1} \right)\).

Số phức đó là số thực khi vào chỉ khi \(2y\left( {x - 1} \right) = 0 \Leftrightarrow y = 0\) hoặc \(x = 1\).

 Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close