Bài 3 trang 74 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho tam giác ABC vuông tại A đường cao AH có BC = 40 cm, AC = 36 cm. Tính AB, BH, CH, và AH.

Quảng cáo

Đề bài

Cho tam giác ABC vuông tại A đường cao AH có BC = 40 cm, AC = 36 cm. Tính AB, BH, CH, và AH.

Phương pháp giải - Xem chi tiết

Áp dụng định lý Pythagore và hệ thức lượng trong tam giác vuông để tính.

Lời giải chi tiết

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A:

\(A{B^2} = B{C^2} - A{C^2} \)\(\,= {40^2} - {36^2} = 304\)

\(\Rightarrow AB = \sqrt {304}  = 4\sqrt {19} \)(cm)

Áp dụng hệ thức lượng trong tam giác vuông ABC đường cao AH:

\(A{C^2} = CH.BC\)

\(\Rightarrow CH = \dfrac{{A{C^2}}}{{BC}} = \dfrac{{{{36}^2}}}{{40}} = \dfrac{{162}}{5}\) (cm)

\(BH = BC - CH = 40 - \dfrac{{162}}{5} = \dfrac{{38}}{5}\)(cm)

\(A{H^2} = BH.CH = \dfrac{{38}}{5}.\dfrac{{162}}{5} = \dfrac{{6156}}{{25}} \)

\(\Rightarrow AH = \dfrac{{18\sqrt {19} }}{5}\)(cm)

Loigiaihay.com

Quảng cáo
list
close
Gửi bài