Bài 3 trang 57 Tài liệu dạy – học Toán 9 tập 2Giải bài tập Tìm hai số u và v biết tổng S = u + v và tích P = u.v của chúng nhận các giá trị sau: Quảng cáo
Đề bài Tìm hai số u và v biết tổng S = u + v và tích P = u.v của chúng nhận các giá trị sau: a) S = 7; P = 12 b) S = - 7; P = 12 c) S = - 1; P = 2 d) S = - 1; P = - 2 Phương pháp giải - Xem chi tiết Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình sau: \({x^2} - Sx + P = 0\) với điều kiện \({S^2} \ge 4P\) Lời giải chi tiết a) Ta có: \({S^2} - 4P = 49 - 48 = 1 > 0\)Hai số u và v sẽ là nghiệm của phương trình sau: \({x^2} - 7x + 12 = 0;\) \(a = 1;b = - 7;c = 12;\) \(\Delta = 49 - 48 = 1 > 0\) Khi đó phương trình có hai nghiệm phân biệt là: \({x_1} = 4;{x_2} = 3\) Vậy \(u = 4;v = 3\) hoặc \(u = 3;v = 4\) b) S = - 7; P = 12 Ta có: \({S^2} - 4P = 49 - 48 = 1 > 0\) Hai số u và v sẽ là nghiệm của phương trình sau: \({x^2} + 7x + 12 = 0;\) \(a = 1;b = 7;c = 12;\) \(\Delta = 49 - 48 = 1 > 0\) Khi đó phương trình có hai nghiệm phân biệt là: \({x_1} = - 3;{x_2} = - 4\) Vậy \(u = - 3;v = - 4\) hoặc \(u = - 4;v = - 3\) c) S = - 1; P = 2 Ta có: \({S^2} - 4P = 1 - 8 = - 7 < 0\) . Không tìm được 2 số u, v thỏa mãn yêu cầu bài toán. d) S = - 1; P = - 2 Ta có: \({S^2} - 4P = 1 + 8 = 9 > 0\) Hai số u và v sẽ là nghiệm của phương trình sau: \({x^2} + x - 2 = 0;\) \(a = 1;b = 1;c = - 2 \Rightarrow a + b + c = 0\) Khi đó phương trình có hai nghiệm phân biệt là: \({x_1} = 1;{x_2} = - 2\) Vậy \(u = 1;v = - 2\) hoặc \(u = - 2;v = 1\). Loigiaihay.com
Quảng cáo
|