Bài 2 trang 130 SGK Toán 8 tập 2

a)Thực hiện phép chia:

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a.

Thực hiện phép chia:

\((2{x^4}-4{x^3} + 5{x^2} + 2x - 3):\)\(\,(2{x^2}-1)\).

Phương pháp giải:

- Áp dụng qui tắc chia đa thức cho đa thức.

Giải chi tiết:

 

Vậy \(\left( {2{{\rm{x}}^4} - 4{{\rm{x}}^3} + 5{{\rm{x}}^2} + 2{\rm{x}} - 3} \right):\left( {2{{\rm{x}}^2} - 1} \right) \) \(= {x^2} - 2{\rm{x}} + 3\) 

LG b.

Chứng tỏ rằng thương tìm được trong phép chia trên luôn luôn dương với mọi giá trị của \(x\).

Phương pháp giải:

Để chứng tỏ rằng thương tìm được trong phép chia trên luôn luôn dương với mọi giá trị của \(x\) ta đưa thương về dạng \({A^2} + k > 0\) với mọi \(x\) và \(k>0\) 

Giải chi tiết:

Thương tìm được có thể viết:

 \({x^2} - 2x + 3 = \left( {{x^2} - 2x + 1} \right) + 2\)

\(= {\left( {x - 1} \right)^2} + 2 > 0\) với mọi \(x\)

(Vì \({\left( {x - 1} \right)^2} \geqslant 0\) với mọi \(x\) nên \( {\left( {x - 1} \right)^2} + 2 \ge 2>0\) với mọi \(x\))

Vậy thương tìm được luôn luôn dương với mọi giá trị của \(x\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close