Bài 11 trang 36 SGK Hình học 10 Nâng cao

Cho tam giác đều ABC có cạnh bằng a.

Quảng cáo

Đề bài

Cho tam giác đều \(ABC\) có cạnh bằng \(a\). Giá trị \(\left| {\overrightarrow {AB}  - \overrightarrow {CA} } \right|\) bằng bao nhiêu ?

(A) \(2a\) ;                              (B) \(a\);

(C) \(a\sqrt 3 \);                            (D) \({{a\sqrt 3 } \over 2}\).

Lời giải chi tiết

 

Gọi \(I\) là trung điểm \(BC\).

Ta có \(\overrightarrow {AB}  - \overrightarrow {CA}  = \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AI} \).

\( \Rightarrow \,\,\left| {\overrightarrow {AB}  - \overrightarrow {CA} } \right| = 2\left| {\overrightarrow {AI} } \right|\)

Mà \(AI = \sqrt {A{B^2} - B{I^2}}  \)\(= \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

Nên \(\left| {\overrightarrow {AB}  - \overrightarrow {CA} } \right| = 2AI = 2.\frac{{a\sqrt 3 }}{2} = a\sqrt 3 \)

Chọn (C).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close