Đề kiểm tra học kì 1 - Đề số 1

Số câu: 40 câu  Thời gian làm bài: 90 phút


Phạm vi kiểm tra: Toàn bộ chương 1, chương 2 phần Đại số và toàn bộ chương 5, chương 6 phần Hình học

Bắt đầu làm bài
Câu 2 Nhận biết

Đa thức nào sau đây là mẫu thức chung của các phân thức $\dfrac{x}{{3{{\left( {x - y} \right)}^2}}},\dfrac{y}{{x - y}}$


Câu 4 Thông hiểu

Cho \(56{x^2} - 45y - 40xy + 63x = \left( {7x - 5y} \right)\left( {mx + n} \right)\) với \(m,\,n \in \mathbb{R}\) . Tìm \(m\) và \(n\)


Câu 5 Thông hiểu
Câu 7 Nhận biết

Chọn câu đúng. Cho hình vẽ sau. Đường trung bình của tam giác \(ABC\) là:


Câu 8 Thông hiểu

Cho \(\dfrac{{{x^3} + 1}}{{{x^2} + 2x + 1}}:\dfrac{{3{x^2} - 3x + 3}}{{{x^2} - 1}} = \dfrac{{x - 1}}{{...}}\). Biểu thức thích hợp điền vào chỗ trống là:


Câu 9 Thông hiểu

Điền vào chỗ trống \(4{x^2} + 4x - {y^2} + 1 = \left( {...} \right)\left( {2x + y + 1} \right)\):


Câu 10 Thông hiểu

Hai đường chéo hình thoi có độ dài là \(10\,cm\) và \(24\,cm\). Độ dài cạnh hình thoi là:


Câu 11 Thông hiểu

Hãy chọn câu đúng?

Cho \(\Delta ABC\), \(I,K\) lần lượt là trung điểm của \(AB\) và \(BC\). Biết \(AC = 10\,cm\). Ta có:


Câu 13 Thông hiểu

Cho hình thoi \(ABCD\) có chu vi bằng \(24\,cm\), đường cao \(AH\) bằng \(3\,cm\). Tính \(\widehat {DCA}\).


Câu 15 Thông hiểu

Viết biểu thức \({x^3} + 12{x^2} + 48x + 64\) dưới dạng lập phương của một tổng


Câu 16 Nhận biết

Với \(B \ne 0,\,D \ne 0\) , hai phân thức \(\dfrac{A}{B}\) và \(\dfrac{C}{D}\) bằng nhau khi


Câu 18 Nhận biết

Chia đơn thức \({\left( { - 3x} \right)^5}\) cho đơn thức \({\left( { - 3x} \right)^2}\) ta được kết quả là


Câu 19 Thông hiểu

Thương của phép chia đa thức \(\left( {3{x^4} - 2{x^3} + 4x - 2{x^2} - 8} \right)\) cho đa thức \(\left( {{x^2} - 2} \right)\)  có hệ số tự do là


Câu 21 Vận dụng

Rút gọn biểu thức \(N = 2{x^n}\left( {3{x^{n + 2}} - 1} \right) - 3{x^{n + 2}}\left( {2{x^n} - 1} \right)\) ta được


Câu 22 Vận dụng
Câu 23 Vận dụng

Rút gọn biểu thức \(M = \left( {2x + 3} \right)\left( {4{x^2} - 6x + 9} \right) - 4\left( {2{x^3} - 3} \right)\) ta được giá trị của \(M\) là


Câu 24 Vận dụng
Câu 25 Vận dụng

Cho \({\left( {x + y} \right)^3} - {\left( {x - y} \right)^3} \)\(= A.y\left( {B{x^2} + C{y^2}} \right)\), biết $A,\,B,C$ là các số nguyên. Khi đó \(A + B + C\) bằng


Câu 26 Vận dụng

Có bao nhiêu giá trị $x$ thỏa mãn $4{(x-3)^2}-(2x-1)(2x + 1) = 10$.


Câu 27 Vận dụng

Giá trị số tự nhiên \(n\) để phép chia \({x^n}:{x^6}\) thực hiện được là:


Câu 28 Vận dụng

Để đa thức \({x^4} + a{x^2} + 1\) chia hết cho \({x^2} + 2x + 1\) thì giá trị của \(a\) là


Câu 29 Vận dụng

Cho \(\dfrac{1}{{1 - x}} + \dfrac{1}{{1 + x}} + \dfrac{2}{{1 + {x^2}}} + \dfrac{4}{{1 + {x^4}}} + \dfrac{8}{{1 + {x^8}}} = \dfrac{{...}}{{1 - {x^{16}}}}\) . Số thích hợp điền vào chỗ trống là


Câu 30 Vận dụng

Tính giá trị biểu thức \(C = \dfrac{{2{x^3}{y^2}}}{{{x^2}{y^5}{z^2}}}:\dfrac{{5{x^2}y}}{{4{x^2}{y^5}}}:\dfrac{{ - 8{x^3}{y^2}{z^3}}}{{15{x^5}{y^2}}}\) khi \(x = 4;y = 1;z =  - 2\) .


Câu 31 Vận dụng

Cho hình thang cân \(MNPQ\) (\(MN\) //\(PQ\)) có góc \(\widehat {MQP} = {45^0}\) và hai đáy có độ dài \(8cm\), \(30cm\). Diện tích của hình thang cân là:


Câu 32 Vận dụng

Cho tam giác \(ABC\), đường trung tuyến \(AM\). Gọi \(D\) là trung điểm của \(AM,E\) là giao điểm của \(BD\) và \(AC,F\) là trung điểm của \(EC\). Tính \(AE\) biết \(AC = 9cm\).


Câu 33 Vận dụng

Cho tứ giác \(ABCD\). Gọi \(E\), \(F\) lần lượt là trung điểm của \(AB\) và \(CD.\)\(M,N,P,Q\) lần lượt là trung điểm của \(AF,CE,BF,DE\). Khi đó \(MNPQ\) là hình gì? Chọn đáp án đúng nhất.


Câu 34 Vận dụng

Cho tam giác \(ABC\) vuông cân tại \(A\), \(AC = 8\,cm\), điểm \(M\) thuộc cạnh \(BC\). Gọi \(D,E\) theo thứ tự là các chân đường vuông góc kẻ từ \(M\) đến \(AB,AC\). Chu vi của tứ giác \(ADME\) bằng:


Câu 35 Vận dụng

Tứ giác \(ABCD\) có \(AB = CD.\) Gọi \(M,N\) theo thứ tự là trung đểm của \(BC,AD.\) Gọi \(I,K\) theo thứ tự là trung điểm của \(AC,BD.\) Chọn câu đúng nhất.


Câu 36 Vận dụng

Cho hình vuông ABCD. M là điểm nằm trong hình vuông. Gọi E, F lần lượt là hình chiếu của M trên cạnh AB và AD. Tứ giác AEMF là hình vuông khi.


Câu 37 Vận dụng

Cho tam giác \(ABC\), lấy \(M\) thuộc \(BC\) sao cho \(BM = 4CM\). Hãy chọn câu đúng:


Câu 38 Vận dụng

Tính diện tích mảnh đất hình thang vuông $ABCD$ có độ dài hai đáy \(AB = 10\,cm;\,DC = 13\,cm;\,\widehat A = \widehat D = 90^\circ \) ( hình vẽ), biết tam giác $BEC$ vuông tại $E$ và có diện tích bằng \(13,5\,c{m^2}\).


Câu 39 Vận dụng cao

Tìm giá trị nhỏ nhất của biểu thức \(A = {x^2} + 2{y^2} - 2xy + 2x - 10y\)


Câu 40 Vận dụng cao

Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chọn câu đúng.