Đề thi thử THPTQG - Đề số 1

Số câu: 50 câu  Thời gian làm bài: 90 phút


Phạm vi kiểm tra: Toàn bộ kiến thức lớp 12.

Bắt đầu làm bài
Câu 1 Thông hiểu

Cho x>0; \(x \ne 1\) thỏa mãn biểu thức $\dfrac{1}{{{{\log }_2}x}} + \dfrac{1}{{{{\log }_3}x}} + ... + \dfrac{1}{{{{\log }_{2017}}x}} = M$ . Khi đó $x$ bằng:


Câu 2 Nhận biết

Điểm \(M\) thuộc mặt cầu tâm \(O\) bán kính \(R\) nếu:


Câu 3 Thông hiểu

Các đồ thị hàm số $y = {x^4} - 2{x^2} + 2$$y =  - {x^2} + 4$ có tất cả bao nhiêu điểm chung?


Câu 4 Thông hiểu

Cho hàm số  $y = f\left( x \right)$  có bảng biến thiên như sau:

Hàm số đạt cực đại tại điểm:


Câu 5 Thông hiểu

 Trong không gian với hệ tọa độ \(Oxyz,\) cho hai mặt phẳng \(\left( P \right):3x+y+z-5=0\) và \(\left( Q \right):x+2y+z-4=0.\) Khi đó, giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) có phương trình là 


Câu 6 Thông hiểu

Cho đường thẳng $d$ có phương trình $d:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 3 + t\end{array} \right.$ và mặt phẳng $(P)$ có phương trình $(P):x + y + z - 10 = 0$. Trong các khẳng định sau, khẳng định nào đúng?


Câu 7 Nhận biết

Trong không gian với hệ tọa độ \(Oxyz\), cho cho điểm \(A\left( { - 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x - 5y + 4z - 36 = 0\). Tọa độ hình chiếu \(H\) của \(A\) trên \(\left( P \right)\) là.


Câu 8 Nhận biết

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I(3;2;-1)$ và đi qua điểm $A(2;1;2)$. Mặt phẳng nào dưới đây tiếp xúc với $(S)$ tại $A$?


Câu 9 Thông hiểu

Thể tích khối trụ có bán kính \(r = 4cm\) và chiều cao \(h = 5cm\) là:


Câu 10 Thông hiểu

Giá trị nhỏ nhất của hàm số $y = 2x + \cos x$ trên đoạn $\left[ {0;1} \right]$ là :


Câu 11 Thông hiểu

Diện tích xung quanh hình nón có bán kính đáy \(r = 3cm\) và độ dài đường sinh \(4cm\) là:


Câu 12 Thông hiểu
Câu 13 Thông hiểu
Câu 14 Thông hiểu

Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$


Câu 15 Thông hiểu

Tích phân \(I = \int\limits_1^2 {{x^5}} dx\) có giá trị là:


Câu 16 Thông hiểu

Tổng các nghiệm của phương trình \({3^{{x^4} - 3{x^2}}} = 81\)


Câu 17 Thông hiểu
Câu 19 Nhận biết

Hàm số nào dưới đây có tập xác định \(\mathbb{R}\)?


Câu 20 Vận dụng

Tìm tất cả các giá trị của tham số $m$ để hàm số $y = {x^3} - mx + 1$ đồng biến trên $\left( {1; + {\mkern 1mu} \infty } \right).$


Câu 21 Vận dụng

Tìm tất cả các giá trị của tham số m để hàm số $y = {x^3} + {x^2} + mx + 1$ đồng biến trên khoảng $\left( { - \infty ; + \infty } \right)$


Câu 22 Vận dụng

Hàm số $y = {x^3} - 3x^2 + 4$ đạt cực tiểu tại:


Câu 23 Vận dụng

Cho hàm số $y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6$ với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số có hai điểm cực trị ${x_1},{\rm{ }}{x_2}$ thỏa mãn ${x_1} <  - 1 < {x_2}$.


Câu 24 Vận dụng

Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$


Câu 25 Vận dụng

Tất cả phương trình tiệm cận ngang của đồ thị hàm số $y = \dfrac{{\sqrt {{x^2} + x + 1} }}{{2x + 3}}$ là:


Câu 26 Vận dụng

Tìm tất cả các giá trị của tham số m để đồ thị hàm số $y =  - {x^3} + 2{x^2} - m$ cắt trục hoành tại đúng một điểm


Câu 27 Vận dụng

Cho số thực $x$ thỏa mãn ${\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right).$Tính giá trị của $P = {\left( {{{\log }_2}x} \right)^2}$


Câu 28 Vận dụng

Cho $a, b$ là các số thực dương, thỏa mãn \({a^{\frac{3}{4}}} > {a^{\frac{4}{5}}}\)  và  \({\log _b}\dfrac{1}{2} < {\log _b}\dfrac{2}{3}\). Mệnh đề nào dưới đây đúng?


Câu 29 Vận dụng

Tìm $m$ để phương trình \({4^x} - {\text{ }}{2^{x{\text{ }} + {\text{ }}3}} + {\text{ }}3{\text{ }} = {\text{ }}m\) có đúng 2 nghiệm $x \in \left( {1;3} \right)$ .


Câu 30 Vận dụng

Phương trình sau đây có bao nhiêu nghiệm\(\left( {{x^2} - 4} \right)\left( {{{\log }_2}x + {{\log }_3}x + {{\log }_4}x + ... + {{\log }_{19}}x - \log _{20}^2x} \right) = 0\)


Câu 32 Vận dụng

Tích phân $I = \int\limits_0^{2\pi } {\sqrt {1 + \sin x} } dx$ có giá trị bằng


Câu 34 Vận dụng

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {{e^x}\sin x} \). Gọi \(a,b\) là các số nguyên thỏa mãn \(I = \dfrac{{{e^{\dfrac{\pi }{2}}} + a}}{b}\). Chọn kết luận đúng:


Câu 35 Vận dụng

Thể tích khối tròn xoay thu được khi quay quanh trục \(Ox\) hình phẳng giới hạn bởi đồ thị hàm số \(y=\frac{\sqrt{3x+1}}{x+1},\) trục hoành và đường thẳng \(x=1\) là


Câu 36 Vận dụng

Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:


Câu 37 Vận dụng

Cho hình nón đỉnh $S$, tâm đáy là $O$, góc ở đỉnh là ${135^0}$. Trên đường tròn đáy lấy điểm $A$ cố định và điểm $M$ di động. Tìm số vị trí $M$ để diện tích $SAM$ đạt giá trị lớn nhất


Câu 38 Vận dụng

Cho mặt cầu tâm \(O\)  bán kính \(R\). Xét mặt phẳng \(\left( P \right)\) thay đổi cắt mặt cầu theo giao tuyến là đường tròn \(\left( C \right)\). Hình nón \(N\) có đỉnh \(S\) nằm trên mặt cầu, có đáy là đường tròn \(\left( C \right)\) và có chiều cao \(h\left( {h > R} \right)\). Tìm \(h\) để thể tích khối nón được tạo nên bởi \(\left( N \right)\) có giá trị lớn nhất.


Câu 39 Vận dụng

Khi sản xuất vỏ lon sữa bò hình trụ, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ lon là ít nhất, tức là diện tích toàn phần của hình trụ là nhỏ nhất. Muốn thể tích khối trụ đó bằng $V$ và diện tích toàn phần phần hình trụ nhỏ nhất thì bán kính đáy $R$ bằng:


Câu 40 Vận dụng

Trong không gian với hệ tọa độ $Oxyz$, cho điểm $A(1;2;3)$ và 2 đường thẳng${d_1}:\dfrac{{x + 3}}{1} = \dfrac{{y - 6}}{{ - 1}} = \dfrac{z}{{ - 1}};{d_2}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 5 - 3t\\z = 4\end{array} \right.$. Phương trình mặt phẳng qua $A$ và song song với ${d_1},{d_2}$ là:


Câu 41 Vận dụng

Trong không gian với hệ tọa độ \(Oxyz,\) cho các điểm \(A\left( -\,1;1;1 \right),\,\,B\left( 1;0;1 \right).\) Mặt phẳng \(\left( P \right)\) đi qua \(A,\,\,B\) và \(\left( P \right)\) cách điểm \(O\) một khoảng lớn nhất. Phương trình của mặt phẳng \(\left( P \right)\) là


Câu 42 Vận dụng

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng $d:\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z =  - 1\end{array} \right.$, điểm $M\left( {1;2;1} \right)$ và mặt phẳng $\left( P \right):2x + y - 2z - 1 = 0$. Đường thẳng \(\Delta \) đi qua \(M\), song song với \(\left( P \right)\) và vuông góc với \(d\) có phương trình:


Câu 43 Vận dụng

Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A\left( {0; - 1;0} \right),B\left( {1;1; - 1} \right)$ và mặt cầu $(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0$. Mặt phẳng $(P)$ đi qua $A, B$ và cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:


Câu 45 Vận dụng cao

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-2y+4z-1=0\) và mặt phẳng \(\left( P \right):x+y-z-m=0.\) Tìm tất cả m để \(\left( P \right)\) cắt \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính lớn nhất.


Câu 46 Vận dụng cao

Bà Hoa gửi $100$ triệu vào tài khoản định kì tính lãi suất là $8\% $ một năm. Sau 5 năm, bà rút toàn bộ số tiền và dùng một nửa để sửa nhà, còn một nửa tiền bà lại đem gửi ngân hàng trong 5 năm với cùng lãi suất. Tính số tiền lãi thu được sau 10 năm.


Câu 47 Vận dụng cao

Cho hàm số bậc ba $y = f\left( x \right)$ có đồ thị như hình vẽ

Tìm tất cả các giá trị của $m\;$ để hàm số $y = \left| {f\left( x \right) + m} \right|$ có ba điểm cực trị.


Câu 48 Vận dụng cao

Tìm $m$ để phương trình $m\ln \left( {1 - x} \right) - \ln x = m$ có nghiệm \(x \in (0;1)\)


Câu 49 Vận dụng cao

Bất phương trình $\sqrt {2{x^3} + 3{x^2} + 6x + 16}  - \sqrt {4 - x}  \geqslant 2\sqrt 3 $ có tập nghiệm là $\left[ {a;b} \right].$ Hỏi tổng $a + b$ có giá trị là bao nhiêu?


Câu 50 Vận dụng cao

Trong không gian với hệ tọa độ $Oxyz$ cho tứ diện $ABCD$ có các đỉnh $A(1;2;1),B( - 2;1;3),C(2; - 1;1),D(0;3;1)$. Phương trình mặt phẳng $(P)$ đi qua hai điểm $A,B$ sao cho $C,D$ cùng phía so với $(P)$ và khoảng cách từ $C$ đến $(P)$ bằng khoảng cách từ $D$ đến $(P)$ là: