Đề kiểm tra học kì 1 - Đề số 3

Số câu: 50 câu  Thời gian làm bài: 90 phút


Phạm vi kiểm tra: Chương 1, 2 và bài đầu chương 3. Hình học: 2 chương đầu tiên

Bắt đầu làm bài
Câu 2 Nhận biết

Công thức tính diện tích xung quanh hình trụ có bán kính đáy \(r\) và chiều cao \(h\) là:


Câu 3 Nhận biết

Cho hàm số \(y = {x^\alpha }\) có đồ thị như hình dưới. Điều kiện của \(\alpha \) là:


Câu 4 Nhận biết

Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?


Câu 7 Thông hiểu

Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng


Câu 10 Thông hiểu
Câu 11 Nhận biết

Cho giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{2\ln \left( {2x + 1} \right) - x}}{x} = \dfrac{a}{b}\) với \(a,b \in {\mathbb{N}^*}\) và \(\left( {a,b} \right) = 1\). Giá trị biểu thức \({a^2} + {b^2}\) là:


Câu 12 Thông hiểu

Đáy của hình lăng trụ đứng tam giác \(ABC.A'B'C'\) là tam giác đều cạnh \(a = 4\) và biết diện tích tam giác \(A'BC\) bằng $8$ . Tính thể tích khối lăng trụ?


Câu 15 Thông hiểu
Câu 16 Thông hiểu
Câu 17 Nhận biết

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Số nghiệm thực của phương trình \(2f\left( x \right) + 3 = 0\) là:


Câu 19 Nhận biết

Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:


Câu 20 Thông hiểu
Câu 23 Thông hiểu

Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:


Câu 26 Thông hiểu

Biết rằng hai đường cong \(y={{x}^{4}}-6{{x}^{3}}+15{{x}^{2}}-20x+5\) và \(y={{x}^{3}}-2{{x}^{2}}-3x-1\) tiếp xúc nhau tại một điểm duy nhất. Tìm tọa độ điểm đó.


Câu 27 Thông hiểu

Tìm tất cả các giá trị thực của m để hàm số \(y = 4{x^3} + m{x^2} - 12x\) đạt cực tiểu tại điểm $x =  - 2$.


Câu 30 Vận dụng

Tìm các giá trị của tham số $m$ sao cho hàm số $y =  - {x^3} - {x^2} + mx + 1$ nghịch biến trên $R$?


Câu 31 Vận dụng

Tìm $m$ để $({C_m})$ : $y = {x^4} - 2m{x^2} + 2$ có $3$ điểm cực trị là $3$ đỉnh của một tam giác vuông cân.


Câu 32 Vận dụng

Gọi $m\;$ là giá trị để hàm số $y = \dfrac{{x - {m^2}}}{{x + 8}}$ có giá trị nhỏ nhất trên $\left[ {0;3} \right]$ bằng $ - 2.$ Mệnh đề nào sau đây là đúng?


Câu 33 Vận dụng

Số đường tiệm cận của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là:


Câu 34 Vận dụng

Cho hàm số $y = \dfrac{{3x + 1}}{{x + 2}}\left( C \right).$ Các đường tiệm cận của (C) cùng với 2 trục tọa độ tạo thành hình chữ nhật có diện tích bằng:


Câu 35 Vận dụng

Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x}  + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.


Câu 36 Vận dụng

Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?


Câu 38 Vận dụng

Cho các số dương $a, b, c, d$. Biểu thức $S = \ln \dfrac{a}{b}+ \ln \dfrac{b}{c} + \ln \dfrac{c}{d}+\ln \dfrac{d}{a}$ bằng:


Câu 39 Vận dụng

Cho $a, b$ là các số thực, thỏa mãn \(0 < a < 1 < b\), khẳng định nào sau đây là đúng?


Câu 40 Vận dụng

Phương trình \({2^{{{\log }_5}\left( {x + 3} \right)}} = x\) có tất cả bao nhiêu nghiệm?


Câu 41 Vận dụng

Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\)  là:


Câu 42 Vận dụng

Giả sử \(F(x)\)  là một nguyên hàm của hàm số \(f(x) = \frac{1}{{3x + 1}}\) trên khoảng \(\left( { - \infty ;\,\, - \frac{1}{3}} \right).\) Mệnh đề nào sau đây đúng?


Câu 43 Vận dụng

Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), \(\widehat {SAB} = \widehat {SAC} = 30^0\). Tính thể tích khối chóp \(S.\,ABC.\)


Câu 44 Vận dụng

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(2a.\)  Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{4{a^3}}}{3}\) . Gọi \(\alpha \)  là góc giữa \(SC\) và mặt đáy, tính \(\tan \alpha .\)


Câu 45 Vận dụng

Khi sản xuất vỏ lon sữa bò hình trụ, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ lon là ít nhất, tức là diện tích toàn phần của hình trụ là nhỏ nhất. Muốn thể tích khối trụ đó bằng $V$ và diện tích toàn phần phần hình trụ nhỏ nhất thì bán kính đáy $R$ bằng:


Câu 46 Vận dụng

Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $


Câu 47 Vận dụng cao

Gọi $m$ là số chữ số cần dùng khi viết số $2^{30}$ trong hệ thập phân và $n$ là số chữ số cần dùng khi viết số $30^2$ trong hệ nhị phân. Ta có tổng $m + n$ bằng


Câu 48 Vận dụng cao

Hỏi có bao nhiêu giá trị \(m\)  nguyên trong đoạn \(\left[ { - 2017;2017} \right]\) để phương trình \(\log mx = 2\log \left( {x + 1} \right)\)  có nghiệm duy nhất?


Câu 49 Vận dụng cao

Cho hàm số \(y = f\left( x \right) = {2^{2019}}{x^3} + {3.2^{2018}}{x^2} - 2018\) có đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ \({x_1};{x_2};{x_3}\). Tính giá trị biểu thức \(P = \dfrac{1}{{f'\left( {{x_1}} \right)}} + \dfrac{1}{{f'\left( {{x_2}} \right)}} + \dfrac{1}{{f'\left( {{x_3}} \right)}}.\)


Câu 50 Vận dụng cao

Cho hàm số $y = f(x)$ liên tục và có đạo hàm cấp hai trên $R$. Đồ thị của các hàm số $y = f(x),y = f'(x),y = f''(x)$ lần lượt là các đường cong nào trong hình vẽ bên.