Đề kiểm tra giữa học kì 1- Đề số 5

Số câu: 50 câu  Thời gian làm bài: 90 phút


Phạm vi kiểm tra: Hết bài hàm số logarit chương 2 giải tích và chương 1 hình học

Bắt đầu làm bài
Câu 2 Thông hiểu

Đồ thị hàm số bậc ba có mấy tâm đối xứng?


Câu 3 Nhận biết

Khối đa diện đều có $20$ mặt thì có bao nhiêu cạnh?


Câu 4 Thông hiểu

Tính giá trị của biểu thức \(P = {\left( {2\sqrt 6  - 5} \right)^{2020}}{\left( {2\sqrt 6  + 5} \right)^{2021}}\).


Câu 5 Thông hiểu

Nếu một khối chóp có thể tích bằng \({a^3}\) và diện tích mặt đáy bằng \({a^2}\) thì chiều cao của khối chóp bằng:


Câu 10 Thông hiểu
Câu 11 Nhận biết

Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:


Câu 12 Nhận biết

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:


Câu 14 Thông hiểu

Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng


Câu 16 Nhận biết

Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) với \(ad - bc \ne 0\) là:


Câu 17 Thông hiểu

Đường cong trong hình vẽ bên là đồ thị của hàm số nào?


Câu 20 Thông hiểu

Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:

Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:


Câu 21 Nhận biết

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( x \right) = 3\) là:


Câu 23 Nhận biết

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?


Câu 24 Nhận biết

Cho $a > 0;a \ne 1,b > 0$, khi đó nếu ${\log _a}b = N$ thì:


Câu 25 Nhận biết

Tính giá trị \({\left( {\dfrac{1}{{16}}} \right)^{ - 0,75}} + {\left( {\dfrac{1}{8}} \right)^{ - \frac{4}{3}}},\)ta được kết quả là:


Câu 26 Thông hiểu

Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$


Câu 27 Nhận biết

Đẳng thức \(\left( {\sqrt[n]{x}} \right)' = ({x^{\frac{1}{n}}})' = \dfrac{1}{n}{x^{ - \frac{{n - 1}}{n}}} = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\) xảy ra khi:


Câu 28 Thông hiểu

Cho hàm số \(y = \dfrac{{x + b}}{{cx - 1}}\) có đồ thị như hình bên.  Mệnh đề nào dưới đây đúng?


Câu 29 Thông hiểu

Cho hàm số \(y = \dfrac{{2018}}{{x - 2}}\) có đồ thị \(\left( H \right).\) Số đường tiệm cận của \(\left( H \right)\) là:


Câu 30 Nhận biết

Hai hình tứ diện có các cạnh tương ứng bằng nhau thì chúng:


Câu 31 Nhận biết

Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì


Câu 33 Vận dụng

Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:


Câu 34 Vận dụng

Đồ thị hàm số $y = {x^3} - \left( {3m + 1} \right){x^2} + \left( {{m^2} + 3m + 2} \right)x + 3$ có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi:


Câu 35 Vận dụng

Đồ thị hàm số \(y = \sqrt {4{x^2} + 4x + 3}  - \sqrt {4{x^2} + 1} \) có bao nhiêu đường tiệm cận ngang?


Câu 36 Vận dụng

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có bảng biến thiên sau:

Đồ thị nào trong các phương án A, B, C, D thể hiện hàm số \(y = f\left( x \right)\)?


Câu 37 Vận dụng

Viết phương trình tiếp tuyến của đồ thị hàm số $y =  - 2{x^3} + 4x + 2$ tại điểm có hoành độ bằng $0.$


Câu 38 Vận dụng

Rút gọn biểu thức $B = \dfrac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1$ ta được kết quả là:


Câu 39 Vận dụng

Cho hàm số \(f\left( x \right) = {\left( {{x^{1 + \dfrac{1}{{2{{\log }_4}x}}}} + {8^{\dfrac{1}{{3{{\log }_{{x^2}}}2}}}} + 1} \right)^{\dfrac{1}{2}}} - 1\)  với \(0 < x \ne 1\). Tính giá trị biểu thức \(P = f\left( {f\left( {2018} \right)} \right)\).


Câu 40 Vận dụng

Biết \({\log _{15}}20 = a + \dfrac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Tính \(T = a + b + c\).


Câu 41 Vận dụng

Cho \(\ln x = 2\). Tính giá trị của biểu thức \(T = 2\ln \sqrt {ex}  - \ln \dfrac{{{e^2}}}{{\sqrt x }} + \ln 3.{\log _3}e{x^2}\) ?


Câu 43 Vận dụng

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:


Câu 44 Vận dụng

Cho lăng trụ đứng \(ABC.A'B'C'\) với $ABC$ là tam giác vuông cân tại $C$ có \(AB = a\) , mặt bên \(ABB'A'\) là hình vuông. Mặt phẳng qua trung điểm $I$ của $AB$ và vuông góc với \(AB'\) chia khối lăng trụ thành 2 phần. Tính thể tích mỗi phần?


Câu 45 Vận dụng cao

Một người lần đầu gửi vào ngân hàng $100$ triệu đồng với kì hạn $3$ tháng, lãi suất $2\% $ một quý theo hình thức lãi kép. Sau đúng 6 tháng, người đó gửi thêm $100$ triệu đồng với kì hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được sau 1 năm gửi thêm tiền gần nhất với kết quả nào sau đây?


Câu 46 Vận dụng cao

Cho các số thực $x, y$ thỏa mãn ${\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} + 2xy \leqslant 32.$ Giá trị nhỏ nhất $m$ của biểu thức $A = {x^3} + {y^3} + 3\left( {xy - 1} \right)\left( {x + y - 2} \right)$ là:


Câu 47 Vận dụng cao

Có bao nhiêu bộ ba số thực \(\left( {x;y;z} \right)\) thỏa mãn đồng thời các điều kiện sau 

 

\(\begin{array}{*{20}{l}}
{{3^{\sqrt[3]{{{x^2}}}}}{{.9}^{\sqrt[3]{{{y^2}}}}}{{.27}^{\sqrt[3]{{{z^2}}}}} = {3^6}}\\
{x.{y^2}.{z^3} = 1}
\end{array}\)


Câu 48 Vận dụng cao

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn \(\left[ {0;\dfrac{{5\pi }}{2}} \right]\) của phương trình \(f\left( {\sin \,x} \right) = 1\) là:


Câu 49 Vận dụng cao

Cho $(C)$ là đồ thị hàm số $y = \dfrac{{x + 1}}{{x - 2}}$. Tìm các điểm trên $(C)$ sao cho tổng khoảng cách từ điểm đó đến 2 tiệm cận là nhỏ nhất:


Câu 50 Vận dụng cao

Cho tứ diện \(ABCD\) có \(G\) là điểm thỏa mãn \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \). Mặt phẳng thay đổi chứa \(BG\) và cắt \(AC,\,\,AD\) lần lượt tại \(M\) và \(N\). Giá trị nhỏ nhất của tỉ số \(\dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\) là