Đề kiểm tra giữa học kì 1 - Đề số 04

Số câu: 40 câu  Thời gian làm bài: 50 phút


Phạm vi kiểm tra: Chương I và chương II

Bắt đầu làm bài
Câu 2 Thông hiểu

Một con lắc lò xo dao động theo phương ngang với cơ năng dao động là \(32mJ\) và lực đàn hồi cực đại tác dụng lên vật có độ lớn là \(4N\). Biên độ dao động của con lắc là:


Câu 4 Thông hiểu

Một con lắc đơn dao động với phương trình \(s = 2\cos 2\pi t\left( {cm} \right)\) (t tính bằng giây). Tần số dao động của con lắc là


Câu 5 Thông hiểu

Một vật dao động điều hòa theo phương trình \(x = 5cos\left( {\pi t} \right)cm\). Gia tốc cực đại của vật bằng:


Câu 6 Thông hiểu

Tại một điểm trên mặt chất lỏng có một nguồn dao động với tần số $120 Hz$, tạo ra sóng ổn định trên mặt chất lỏng. Xét $5$ gợn lồi liên tiếp trên một phương truyền sóng ở về một phía so với nguồn, gợn thứ nhất cách gợn thứ năm $0,5m$. Tính tốc độ truyền sóng trên mặt chất lỏng:


Câu 7 Thông hiểu

Một đồng hồ quả lắc được coi như một con lắc đơn chạy đúng giờ tại một địa điểm trên mặt đất. Khi nhiệt độ môi trường giảm thì đồng hồ


Câu 8 Thông hiểu

Tại nơi có gia tốc trọng trường là 9,8m/s2. Một con lắc đơn dao động điều hòa với biên độ góc 60. Biết khối lượng vật nhỏ của con lắc là 90g và chiều dài dây treo là 1m. Chọn mốc thế năng tại vị trí cân bằng, cơ năng của con lắc xấp xỉ:


Câu 9 Thông hiểu

Trên một sợi dây đàn hồi đang có sóng dừng. Biết khoảng cách ngắn nhất giữa một nút sóng và vị trí cân bằng của một bụng sóng là 0,25m. Sóng truyền trên dây với bước sóng là:


Câu 10 Thông hiểu

Một vật nhỏ dao động điều hòa với biên độ $4cm$ và chu kì $2s$. Quãng đường vật đi được trong $4s$ là:


Câu 11 Thông hiểu

Một con lắc đơn gồm quả cầu nhỏ khối lượng m được treo vào một đầu sợi dây mềm, nhẹ, không dãn, dài 64cm. Con lắc dao động điều hòa tại nơi có gia tốc trọng trường g. Lấy g = π2 (m/s2). Chu kì dao động của con lắc là :


Câu 12 Thông hiểu

Một chất điểm có khối lượng \(500 g\) dao động điều hòa dưới tác dụng của một lực kéo về có biểu thức \(F = -0,8cos4t (N)\). Biên độ dao động của chất điểm bằng


Câu 13 Thông hiểu

Một vật dao động điều hòa, trong $1$ phút thực hiện được $30$ dao động toàn phần. Quãng đường mà vật di chuyển trong $8s$ là $64cm$. Biên độ dao động của vật là:


Câu 14 Thông hiểu

Một vật dao động điều hòa có độ lớn vận tốc cực đại là \(50\pi cm/s\). Tốc độ trung bình của vật trong một chu kì dao động là:


Câu 15 Thông hiểu

Con lắc lò xo gồm vật nặng m = 100g và lò xo nhẹ có độ cứng \(k = 100N/m\). Tác dụng một ngoại lực cưỡng bức biến thiên điều hòa biên độ \(F_0\) và tần số \(f_1 = 6Hz\) thì biên độ dao động là \(A_1\). Nếu giữ nguyên biên độ \(F_0\) mà tăng tần số ngoại lực đến \(f_2=5,5Hz\) thì biên độ dao động ổn định là \(A_2\). Kết luận đúng là:


Câu 16 Thông hiểu

Một sóng cơ học lan truyền trong một môi trường A có vận tốc vA và khi truyền trong môi trường B có vận tốc vB = 2vA. Bước sóng trong môi trường B sẽ:


Câu 17 Vận dụng

Một điểm M chuyển động tròn đều trên một đường tròn với tốc độ 15 cm/s. Gọi P là hình chiếu của M lên một đường kính của đường tròn quỹ đạo. Tốc độ trung bình của P trong một dao động toàn phần bằng


Câu 18 Vận dụng

Một chất điểm chuyển động tròn đều trong mặt phẳng thẳng đứng, có bán kính quỹ đạo là $8cm$, bắt đầu từ vị trí thấp nhất của đường tròn theo chiều ngược chiều kim đồng hồ với tốc độ không đổi là $16π cm/s$. Hình chiếu của chất điểm lên trục Ox nằm ngang, đi qua tâm O của đường tròn, nằm trong mặt phẳng quỹ đạo có chiều từ trái qua phải là


Câu 19 Vận dụng

Vật dao động với phương trình \(x = 5cos\left( {4\pi t + \frac{\pi }{6}} \right)cm\). Tìm thời điểm vật đi qua vị trí biên dương lần thứ \(4\) kể từ thời điểm ban đầu.


Câu 20 Vận dụng

Chất điểm có phương trình dao động \(x = 8\sin \left( {2\pi t + \frac{\pi }{2}} \right)\,\,cm\). Quãng đường mà chất điểm đó đi được từ \({t_0} = 0\) đến \({t_1} = 1,5\,\,s\) là:


Câu 21 Vận dụng

Mối liên hệ giữa li độ \(x\), tốc độ \(v\) và tần số góc \(\omega \) của một dao động điều hòa khi động năng bằng 3 lần thế năng của hệ là:


Câu 22 Vận dụng

Con lắc lò xo thẳng đứng gồm lò xo nhẹ đầu trên cố định, đầu dưới treo vật nặng m1, khi vật nằm cân bằng lò xo dãn 2,5cm. Vật m2 = 2m1 được nối với m1 bằng một dây mềm, nhẹ. Khi hệ thống cân bằng, đốt dây nối để m1 dao động điều hòa, lấy g = 10m/s2. Trong 1 chu kỳ dao động của m1 thời gian lò xo bị nén là:


Câu 23 Vận dụng

Một con lắc lò xo đặt trên mặt phẳng nằm ngang gồm lò xo nhẹ có một đầu cố định, đầu kia gắn với vật nhỏ m1. Ban đầu giữ vật m1 tại vị trí mà lò xo bị nén 8cm, đặt vật nhỏ m2 (có khối lượng bằng khối lượng vật m1) trên mặt phẳng nằm ngang và sát với vật m1. Buông nhẹ để hai vật bắt đầu chuyển động theo phương của trục lò xo. Bỏ qua mọi ma sát. Ở thời điểm lò xo có chiều dài cực đại lần đầu tiên thì khoảng cách giữa hai vật m1 và m2 là:


Câu 24 Vận dụng

Con lắc đơn dao động điều hòa có \({S_0} = 6cm\), tại nơi có gia tốc trọng trường \(g{\rm{ }} = {\rm{ }}10m/{s^2}\). Biết chiều dài của dây \(l = 0,9m\). Hãy viết phương trình dao động biết lúc \(t{\rm{ }} = {\rm{ }}0\) vật đi qua vị trí cân bằng theo chiều âm?


Câu 25 Vận dụng

Một con lắc đơn dao động điều hòa với biên độ góc α0 có cosα0 = 0,97. Khi vật đi qua vị trí có li độ góc α thì lực căng dây bằng trọng lực của vật. Giá trị cosα bằng:


Câu 26 Vận dụng

Một con lắc đơn được treo ở trần một thang máy. Khi thang máy đứng yên, con lắc dao động điều hoà với chu kì T. Khi thang máy đi lên thẳng đứng, chậm dần đều với gia tốc có độ lớn bằng một nửa gia tốc trọng trường tại nơi đặt thang máy thì con lắc dao động điều hoà với chu kì T’ bằng:


Câu 27 Vận dụng

Hai con lắc đơn treo cạnh nhau có chu kì dao động nhỏ là T1 = 4s và T2 = 4,8s. Kéo hai con lắc lệch một góc nhỏ như nhau rồi đồng thời buông nhẹ. Hỏi sau thời gian ngắn nhất là bao nhiêu thì hai con lắc sẽ đồng thời trở lại vị trí này:


Câu 28 Vận dụng

Hai con lắc lò xo giống hệt nhau được treo vào hai điểm ở cùng độ cao, cách nhau 3cm. Kích thích cho hai con lắc dao động điều hòa theo phương thẳng đứng với phương trình lần lượt là \({x_1} = 3c{\rm{os}}\left( {\omega t} \right)\) và \({x_2} = 6c{\rm{os}}\left( {\omega t + \frac{\pi }{3}} \right)cm\). Trong quá trình dao động, khoảng cách lớn nhất giữa hai vậ nhỏ của các con lắc bằng:


Câu 29 Vận dụng

Khảo sát thực nghiệm một con lắc lò xo gồm vật nhỏ có khối lượng \(216{\rm{ }}g\) và lò xo có độ cứng k, dao động dưới tác dụng của ngoại lực \(F{\rm{ }} = {\rm{ }}{F_0}cos2\pi ft\), với \({F_0}\) không đổi và \(f\) thay đổi được. Kết quả khảo sát ta được đường biểu diễn biên độ \(A\) của con lắc theo tần số \(f\) có đồ thị như hình vẽ. Giá trị của \(k\) xấp xỉ bằng:


Câu 30 Vận dụng

Sóng truyền từ $O$ đến $M$ với vận tốc $v = 40cm/s$, phương trình sóng tại $O$ là \({u_0} = 4sin\dfrac{\pi }{2}t\left( {cm} \right)\). Biết vào thời điểm $t$ thì li độ của phần tử $M$ là $3cm$ và đang chuyển động theo chiều dương, vậy lúc $t + 6(s)$ li độ của $M$ là:


Câu 31 Vận dụng

Trong thí nghiệm giao thoa sóng trên mặt nước, tốc độ truyền sóng là \(3,2m/s\), cần rung với tần số \(50Hz\). Khoảng cách giữa hai điểm cực đại giao thoa cạnh nhau trên đoạn thẳng nối hai nguồn\({S_1}{S_2}\) có giá trị là bao nhiêu?


Câu 33 Vận dụng

Trên mặt nước có hai nguồn kết hợp A,B cách nhau \(12cm\) dao động theo các phương trình : \({u_1} = 0,2.cos(50\pi t + \pi )cm\) và \({u_2} = 0,2.cos(50\pi t + \frac{\pi }{2})cm\). Biết vận tốc truyền sóng trên mặt nước là \(0,5{\rm{ }}\left( {m/s} \right)\). Tính số điểm cực đại và cực tiểu trên đoạn A, B.


Câu 34 Vận dụng

Trong giờ thực hành hiện tượng sóng dừng trên dây với hai đầu cố định, một học sinh thực hiện như sau: tăng tần số của máy phát dao động thì thấy rằng khi sóng dừng xuất hiện trên dây tương ứng với 1 bó sóng và 7 bó sóng thì tần số thu được thỏa mãn \({f_7} - {f_1} = 150\,\,\left( {Hz} \right)\). Khi trên dây xuất hiện sóng dừng với 4 nút sóng thì máy phát tần số hiện giá trị là

 


Câu 35 Vận dụng

Một người đứng cách một bức tường 30 m nghe một tiếng súng nổ. Vị trí đặt súng cách tường 165 m. Người và súng cùng trên đường thẳng vuông góc với tường. Sau khi nghe tiếng nổ, người này lại nghe tiếng nổ do âm thanh phản xạ trên bức tường. Tốc độ âm thanh trong không khí là 330 m/s. Khoảng thời gian giữa hai tiếng nổ là:


Câu 36 Vận dụng

Tại mặt chất lỏng có hai nguồn phát sóng \(A,{\rm{ }}B\) giống nhau và cách nhau một đoạn \(10{\rm{ }}cm\). Gọi \(M\)và \(N\) là hai điểm thuộc mặt chất lỏng sao cho \(MN{\rm{ }} = {\rm{ }}8{\rm{ }}cm\) và \(ABMN\) là hình thang cân (\(AB\) song song với \(MN\)). Bước sóng của sóng trên mặt chất lỏng do hai nguồn phát ra là \(1{\rm{ }}cm\). Để trong đoạn \(MN\) có \(7\)  điểm dao động với biên độ cực đại thì diện tích lớn nhất của hình bình hành là:


Câu 37 Vận dụng cao

Hai dao động cùng phương lần lượt có phương trình ${x_1} = {A_1}{\rm{cos(}}\pi {\rm{t + }}\frac{\pi }{6})(cm)$ và ${x_2} = 6{\rm{cos(}}\pi {\rm{t - }}\frac{\pi }{2})(cm)$. Dao động tổng hợp của hai dao động này có phương trình $x = A{\rm{cos(}}\pi {\rm{t + }}\varphi$ (cm). Thay đổi A1 cho đến khi A đạt giá trị cực tiểu thì:


Câu 38 Vận dụng cao

Một lò xo nhẹ cách điện có độ cứng \(k{\rm{ }} = {\rm{ }}50{\rm{ }}N/m\) một đầu cố định, đầu còn lại gắn vào quả cầu nhỏ tích điện \(q =  + 5\mu C\), khối lượng \(m{\rm{ }} = {\rm{ }}200g\). Quả cầu có thể dao động không ma sát dọc theo trục lò xo nằm ngang và cách điện. Tại thời điểm ban đầu t = 0 kéo vật tới vị trí lò xo giãn 4 cm rồi thả nhẹ đến thời điểm t = 0,2 s thì thiết lập điện trường không đổi trong thời gian 0,2 s, biết điện trường nằm ngang dọc theo trục lò xo hướng ra xa điểm cố định và có độ lớn \(E{\rm{ }} = {\rm{ }}{10^5}V/m\) . Lấy \(g{\rm{ }} = {\rm{ }}10m/{s^2}\). trong quá trình dao động thì tốc độ cực đại mà quả cầu đạt được là


Câu 39 Vận dụng cao

Một vật có khối lượng không đổi, thực hiện đồng thời hai dao động điều hòa có phương trình dao động lần lượt là \({x_1} = {\rm{ }}10cos(2\pi t + {\rm{ }}\varphi )cm\) và \({x_2} = {\rm{ }}{A_2}cos(2\pi t - \dfrac{\pi }{2})cm\) thì dao động tổng hợp là \(x = Acos(2\pi t - \dfrac{\pi }{3})cm\) . Khi năng lượng dao động của vật cực đại thì biên độ dao động \({A_2}\) có giá trị là:


Câu 40 Vận dụng cao

Từ điểm $A$ bắt đầu thả rơi tự do một nguồn phát âm có công suất không đổi, khi chạm đất tại $B$ nguồn âm đứng yên luôn. Tại $C$ ở khoảng giữa $A$ và $B$ (nhưng không thuộc $AB$), có một máy $M$ đo mức cường độ âm, $C$ cách $AB$ \(12{\rm{ }}m\). Biết khoảng thời gian từ khi thả nguồn đến khi máy $M$ thu được âm có mức cường độ âm cực đại, lớn hơn \(1,528s\) so với khoảng thời gian từ đó đến khi máy $M$ thu được âm có mức cường độ âm không đổi; đồng thời hiệu hai khoảng cách tương ứng này là \(11{\rm{ }}m\). Bỏ qua sức cản không khí, lấy \(g = 10{\rm{ }}m/{s^2}\). Hiệu giữa mức cường độ âm cuối cùng và đầu tiên xấp xỉ: