Đề kiểm tra 15 phút chương 2: Hàm số lũy thừa, mũ, logarit - Đề số 3

Số câu: 12 câu  Thời gian làm bài: 15 phút


Phạm vi kiểm tra: Từ bài phương trình mũ và một số phương pháp giải đến hết bài bất phương trình logarit

Bắt đầu làm bài
Câu 1 Thông hiểu

Tổng các nghiệm của phương trình \({3^{{x^4} - 3{x^2}}} = 81\)


Câu 3 Thông hiểu

Cho x>0; \(x \ne 1\) thỏa mãn biểu thức $\dfrac{1}{{{{\log }_2}x}} + \dfrac{1}{{{{\log }_3}x}} + ... + \dfrac{1}{{{{\log }_{2017}}x}} = M$ . Khi đó $x$ bằng:


Câu 4 Thông hiểu

Tập nghiệm của bất phương trình \({\left( {2 + \sqrt 3 } \right)^{\dfrac{{x - 3}}{{x - 1}}}} < {\left( {2 - \sqrt 3 } \right)^{\dfrac{{x - 1}}{{x - 3}}}}\) là :


Câu 5 Nhận biết
Câu 6 Nhận biết
Câu 8 Thông hiểu

Điều kiện xác định của hệ phương trình \(\left\{ \begin{array}{l}{\log _2}\left( {{x^2} - 1} \right) + {\log _2}\left( {y - 1} \right) = 1\\{3^x} = {3^y}\end{array} \right.\) là:


Câu 9 Vận dụng

Tìm $m$ để phương trình \({4^x} - {\text{ }}{2^{x{\text{ }} + {\text{ }}3}} + {\text{ }}3{\text{ }} = {\text{ }}m\) có đúng 2 nghiệm $x \in \left( {1;3} \right)$ .


Câu 10 Vận dụng

Cho phương trình \(m\ln \left( {x + 1} \right) - x - 2 = 0\). Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó \(a\) thuộc khoảng nào dưới đây ?


Câu 11 Vận dụng
Câu 12 Vận dụng

Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\) nghiệm đúng với mọi giá trị \(x \in \left[ {1;64} \right]\).