Đề kiểm tra 1 tiết chương 6: Mặt nón, mặt trụ, mặt cầu - Đề số 1

Số câu: 25 câu  Thời gian làm bài: 45 phút


Phạm vi kiểm tra: Từ bài mặt tròn xoay đến hết bài mặt cầu nội, ngoại tiếp khối đa diện

Bắt đầu làm bài
Câu 1 Nhận biết

Cho hai đường thẳng \(d\) và \(\Delta \), điều kiện nào sau đây của \(d\) và \(\Delta \) thì khi quay \(d\) quanh \(\Delta \) ta được một mặt trụ?


Câu 2 Thông hiểu
Câu 3 Nhận biết
Câu 4 Thông hiểu

Cho lăng trụ đứng $ABC.A'B'C'$ có đáy là tam giác vuông cân đỉnh $A,AB = AC = a,AA' = a\sqrt 2 $. Diện tích mặt cầu ngoại tiếp tứ diện $CA'B'C'$ là:


Câu 5 Thông hiểu

Cho hình nón có các kích thước \(r = 1cm;l = 2cm\) với \(r,l\) lần lượt là bán kính đáy và độ dài đường sinh hình nón. Diện tích toàn phần hình nón là:


Câu 6 Nhận biết

Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?


Câu 7 Thông hiểu

Cho hình trụ có trục \(\Delta \) và bán kính \(R\). Khi cắt hình trụ bởi mặt phẳng \(\left( \alpha  \right)\) song song với \(\Delta \) và cách \(\Delta \) một khoảng \(d\left( {\Delta ;\left( \alpha  \right)} \right) = k < R\) thì ta được thiết diện là:


Câu 8 Thông hiểu
Câu 9 Nhận biết

Số mặt cầu ngoại tiếp tứ diện là:


Câu 10 Nhận biết

Cho hình chữ nhật \(ABCD\), khi quay hình chữ nhật quanh cạnh \(AD\) thì \(CD\) được gọi là:


Câu 11 Thông hiểu

Thể tích khối trụ có bán kính \(r = 4cm\) và chiều cao \(h = 5cm\) là:


Câu 12 Nhận biết

Cho tam giác $AOB$ vuông tại  $O$. Quay tam giác quanh cạnh $OA$ ta được hình nón có đường sinh và đường cao lần lượt là:


Câu 13 Nhận biết

Một cái cốc hình trụ cao $15cm$ đựng được $0,5$ lít nước. Hỏi bán kính đường tròn đáy đáy của cốc xấp xỉ bằng bao nhiêu (làm tròn đến hàng thập phân thứ hai)?


Câu 14 Thông hiểu

Diện tích xung quanh hình nón có bán kính đáy \(r = 3cm\) và độ dài đường sinh \(4cm\) là:


Câu 16 Vận dụng

Thể tích khối nón có bán kính đáy \(r = 2cm\) và \(h = 3cm\) là:


Câu 17 Vận dụng

Cho tam giác $ABO$ vuông tại $O$, có góc \(\widehat {BAO} = {30^0},AB = a\) . Quay tam giác $ABO$ quanh trục $AO$ ta được một hình nón có diện tích xung quanh bằng:


Câu 18 Vận dụng

Khi sản xuất vỏ lon sữa bò hình trụ, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ lon là ít nhất, tức là diện tích toàn phần của hình trụ là nhỏ nhất. Muốn thể tích khối trụ đó bằng $V$ và diện tích toàn phần phần hình trụ nhỏ nhất thì bán kính đáy $R$ bằng:


Câu 19 Vận dụng

Cho hình trụ có các đáy là hình tròn tâm $O$ và tâm $O'$ , bán kính đáy bằng chiều cao và bằng $4cm$. Trên đường tròn đáy tâm $O$ lấy điểm $A$, trên đường tròn đáy tâm $O'$ lấy điểm B sao cho $AB = 4\sqrt 3 cm$. Thể tích khối tứ diện $AOO'B$ là:


Câu 20 Vận dụng

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh bằng $1$, mặt bên $SAB$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích $V$ của khối cầu ngoại tiếp hình chóp đã cho.


Câu 21 Vận dụng

Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $


Câu 22 Vận dụng

Cho hình chóp tam giác đều $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh \(SA = \dfrac{{2a\sqrt 3 }}{3}\) . Gọi $D$ là điểm đối xứng của $B$ qua $C$. Tính bán kính $R$ của mặt cầu ngoại tiếp hình chóp $S.ABD$ 


Câu 23 Vận dụng cao

Cho hình chóp đều $n$ cạnh $(n \ge 3)$. Cho biết bán kính đường tròn ngoại tiếp đa giác đáy là $R$ và góc giữa mặt bên và mặt đáy bằng ${60^0}$ , thể tích khối chóp bằng $\dfrac{{3\sqrt 3 }}{4}{R^3}$  . Tìm $n$?


Câu 24 Vận dụng cao

Có 4 viên bi hình cầu bán kính bằng 1cm. Người ta đặt 3 viên bi tiếp xúc nhau và cùng tiếp xúc với mặt bàn. Sau đó đai 3 viên bi đó lại và đặt 1 viên bi thứ 4 tiếp xúc vởi cả 3 viên bi trên như hình vẽ bên dưới. Gọi O là điểm thuộc bề mặt của viên bi thứ 4 có khoảng cách đến mặt bàn là lớn nhất. Khoảng cách từ O đến mặt bàn bằng


Câu 25 Vận dụng cao

Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của nhà đó. Biết rằng trên bề mặt của quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà mà nó tiếp xúc bằng $1, 2, 4.$ Tổng độ dài đường kính của hai quả bóng đó.