Đề kiểm tra 1 tiết chương 2: Hàm số lũy thừa, mũ và logarit - Đề số 1
Số câu: 25 câu Thời gian làm bài: 45 phút
Phạm vi kiểm tra: Từ bài lũy thừa với số mũ hữu tỉ đến hết bài bất phương trình logarit
Tập nghiệm của bất phương trình $\ln\left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0$ là:
Trong các phương trình sau đây, phương trình nào có nghiệm?
Kết luận nào đúng về số thực \(a\) nếu \({\left( {\dfrac{1}{a}} \right)^{ - 0,2}} < {a^2}\)
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Cho các số thực \(a < b < 0\). Mệnh đề nào sau đây sai?
Công thức nào sau đây là công thức tăng trưởng mũ?
Tìm tập nghiệm của phương trình \({\log _3}x + \dfrac{1}{{{{\log }_9}x}} = 3\)
Nếu $a > 1$ và $b > c > 0$ thì:
Cho các đồ thị hàm số \(y = {a^x},y = {b^x},y = {c^x}\left( {0 < a,b,c \ne 1} \right)\), chọn khẳng định đúng:

Viết các số sau theo thứ tự tăng dần: $a = {1^{3,8}};\,\,b = {2^{ - 1}};\,\,c = {\left( {\dfrac{1}{2}} \right)^{ - 3}}$
Chọn mệnh đề đúng:
Tìm tập nghiệm S của bất phương trình \({5^{x + 1}} - \dfrac{1}{5} > 0\)
Giá trị $P = \dfrac{{\sqrt[5]{4}.\sqrt[4]{{64}}.{{(\sqrt[3]{{\sqrt 2 }})}^4}}}{{\sqrt[3]{{\sqrt[3]{{32}}}}}}$ là:
Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Sự tăng trưởng của 1 loài vi khuẩn được tính theo công thức $S = A.{e^{rt}}$ , trong đó $A$ là số lượng vi khuẩn ban đầu, $r$ là tỉ lệ tăng trưởng $(r>0)$, $t$ là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là $150$ con và sau $5$ giờ có $450$ con, tìm số lượng vi khuẩn sau 10 giờ tăng trưởng.
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Biết hai hàm số $y = {a^x}$ và $y = f\left( x \right)$ có đồ thị như hình vẽ đồng thời đồ thị của hai hàm số này đối xứng nhau qua đường thẳng $d:y = - x$. Tính $f\left( { - {a^3}} \right).$
Tìm các giá trị $m$ để phương trình \({2^{x + 1}} = m{.2^{x + 2}} - {2^{x + 3}}\) luôn thỏa, \(\forall x \in \mathbb{R}\).
Tập nghiệm của bất phương trình $({2^{{x^2} - 4}} - 1).\ln {x^2} < 0$ là:
Bà Hoa gửi $100$ triệu vào tài khoản định kì tính lãi suất là $8\% $ một năm. Sau 5 năm, bà rút toàn bộ số tiền và dùng một nửa để sửa nhà, còn một nửa tiền bà lại đem gửi ngân hàng trong 5 năm với cùng lãi suất. Tính số tiền lãi thu được sau 10 năm.