Đề kiểm tra giữa học kì 1- Đề số 2

Số câu: 25 câu  Thời gian làm bài: 45 phút


Phạm vi kiểm tra: Chương 1 đại số và giải tích, chương 1 hình học

Bắt đầu làm bài
Câu 1 Nhận biết

Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?


Câu 2 Thông hiểu

Số nghiệm của phương trình \(\tan x = \tan \dfrac{{3\pi }}{{11}}\) trên khoảng \(\left( {\dfrac{\pi }{4};2\pi } \right)\) là:


Câu 4 Thông hiểu

Hình nào dưới đây biểu diễn đồ thị hàm số \(y = f(x) = 2\sin 2x?\)


Câu 5 Thông hiểu

Trong mặt phẳng tọa độ \(Oxy\) cho đường thẳng \(\Delta :\,x + 2y - 1 = 0\) và điểm \(I\left( {1;0} \right)\). Phép vị tự tâm \(I\) tỉ số \(k\) biến đường thẳng \(\Delta \) thành \(\Delta '\) có phương trình là:


Câu 6 Nhận biết

Điền cụm từ thích hợp vào chỗ chấm: “Phép đồng nhất là phép biến hình biến điểm \(M\) thành …”.


Câu 7 Thông hiểu

Hình nào sau đây có trục đối xứng và đồng thời có tâm đối xứng?


Câu 8 Thông hiểu

Trong mặt phẳng tọa độ $Oxy$ cho phép quay tâm $O$ biến điểm \(A\left( {1;0} \right)\) thành điểm \(A'\left( {0;1} \right)\). Khi đó nó biến điểm \(M\left( {1; - 1} \right)\) thành điểm:


Câu 9 Thông hiểu

Cho hình bình hành ABCD. Phép tịnh tiến theo \({T_{\overrightarrow {AB}  - \overrightarrow {AC} }}\) biến đoạn thẳng DC thành đoạn thẳng nào sau đây?


Câu 10 Nhận biết

Tìm m để phương trình $m\sin x + 5\cos x = m + 1$ có nghiệm.


Câu 11 Nhận biết

Trong mặt phẳng với hệ tọa độ $Oxy$ , cho $T$ là một phép tịnh tiến theo vectơ $\overrightarrow u $ biến điểm $M\left( {x;y} \right)$ thành điểm $M'\left( {x';y'} \right)$ với biểu thức tọa độ là: $x = x' + 3;\,\,y = y' - 5$. Tọa độ của vectơ tịnh tiến $\overrightarrow u $ là:


Câu 12 Thông hiểu

Số phát biểu đúng trong các phát biểu sau:

(1) Phép tịnh tiến và phép đối xứng trục đều biến đường thẳng thành đường thẳng song song, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đương tròn thành đường tròn có cùng bán kính.

(2) Tứ giác $ABCD$ là hình thang cân đáy \(AD//BC\). Gọi $M,N$ lần lượt là trung điểm của hai cạnh bên $AB$ và $CD$. Khi đó, đường thẳng $MN$ là trục đối xứng của $ABCD$.

(3) Cho đường thẳng $d$ có phương trình \(y =  - x\). Ảnh của đường tròn \(\left( C \right):\,\,{\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 7\) qua  phép đối xứng trục $d$ là \(\left( {C'} \right):\,\,{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} = 7\)

(4) Ảnh của đường phân giác ứng với góc phần tư thứ $(I)$ qua phép đối xứng trục $Oy$ là đường thẳng $d$ có phương trình \(y =  - x\)


Câu 13 Thông hiểu

Hình nào dưới đây biểu diễn đồ thị hàm số \(y = f\left( x \right) = 2\sin 2x\).


Câu 16 Nhận biết

Điểm \(O\left( {0;0} \right)\) luôn thuộc đồ thị hàm số


Câu 17 Vận dụng

Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = 3\sin x + 4\cos x - 1\):


Câu 20 Vận dụng

Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \dfrac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + 2\cos x + 3}}{{2 + \cos x}}\)


Câu 21 Vận dụng

Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng \(\Delta \) có phương trình \(y =  - 3x + 2\). Thực hiện liên tiếp hai phép tịnh tiến theo các vectơ \(\vec u = \left( { - 1;2} \right)\) và \(\vec v = \left( {3;1} \right)\) thì đường thẳng \(\Delta \) biến thành đường thẳng \(d\) có phương trình là:


Câu 22 Vận dụng

Trong mặt phẳng \(Oxy,\) cho hai đường tròn \(\left( {{C_1}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 1;\,\)\(\left( {{C_2}} \right):{\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 4.\) Tìm tâm vị tự ngoài của hai đường tròn.


Câu 23 Vận dụng cao

Số các giá trị nguyên của \(m\) để phương trình \({\cos ^2}x + \sqrt {\cos x + m}  = m\) có nghiệm là:


Câu 25 Vận dụng cao

Trong mặt phẳng \(Oxy\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\): \({x^2} + {y^2} = 1\) qua phép đối xứng tâm \(I\left( {1;\;0} \right)\).