Đề kiểm tra giữa học kì 1- Đề số 1
Số câu: 25 câu Thời gian làm bài: 45 phút
Phạm vi kiểm tra: Chương 1 đại số và giải tích, chương 1 hình học
Tìm tập xác định của hàm số sau \(y = \tan \left( {2x + \dfrac{\pi }{3}} \right)\).
Trong mặt phẳng với hệ tọa độ $Oxy$ , cho $T$ là một phép tịnh tiến theo vectơ $\overrightarrow u $ biến điểm $M\left( {x;y} \right)$ thành điểm $M'\left( {x';y'} \right)$ với biểu thức tọa độ là: $x = x' + 3;\,\,y = y' - 5$. Tọa độ của vectơ tịnh tiến $\overrightarrow u $ là:
Phép biến hình biến điểm \(M\) thành điểm \(M'\) là hình chiếu của \(M\) lên đường thẳng \(d\). Phép biến hình đó được gọi là:
Xét hàm số \(y = \sin \,x\) trên đoạn \(\left[ { - \pi ;\,0} \right].\) Khẳng định nào sau đây là đúng?
Cho hai hàm số $f\left( x \right) = \dfrac{1}{{x - 3}} + 3{\sin ^2}x$ và $g\left( x \right) = \sin \sqrt {1 - x} $. Kết luận nào sau đây đúng về tính chẵn lẻ của hai hàm số này?
Một trong các họ nghiệm của phương trình $\sin x = \dfrac{1}{2}$ là:
Với giá trị nào của m thì phương trình \(\sqrt 3 \sin 2x - m\cos 2x = 1\) luôn có nghiệm?
Giải phương trình $1 + {\rm{sin}}x + {\rm{cos}}x + {\rm{tan}}x = 0$.
Trong mặt phẳng tọa độ \(Oxy\) cho đường tròn $\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 4} \right)^2} = 1$ và đường thẳng \(d\) có phương trình $y - x = 0.$ Phép đối xứng trục \(d\) biến đường tròn \(\left( C \right)\) thành đường tròn $\left( {C'} \right)$ có phương trình là:
Trong mặt phẳng tọa độ \(Oxy\) cho hai đường tròn $\left( C \right)$ và \(\left( {C'} \right)\) có phương trình lần lượt là ${x^2} + {y^2} - 4x - 4y + 7 = 0$ và ${x^2} + {y^2} - 12x - 8y + 51 = 0$. Xét phép đối xứng tâm \(I\) biến $\left( C \right)$ và \(\left( {C'} \right)\). Tìm tọa độ tâm \(I.\)
Cho hình thang \(ABCD\) có 2 cạnh đáy là \(AB\) và \(CD\) thỏa mãn \(AB = 3CD.\) Phép vị tự biến điểm \(A\) thành điểm \(C\) và biến điểm \(B\) thành điểm \(D\) có tỉ số \(k\) là:
Tìm chu kì của hàm số \(y = f\left( x \right) = \tan 2x\).
Giải phương trình \(\cos x + \cos 2x + \cos 3x + \cos 4x = 0\).
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: \(y = 2{\cos ^2}x - 2\sqrt 3 \sin {\rm{x}}\cos x + 1\)
Trong mặt phẳng tọa độ \(Oxy\) cho điểm \(A\left( {2;5} \right).\) Phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {1;2} \right)\) biến \(A\) thành điểm \(A'\) có tọa độ là:
Trong mặt phẳng \(Oxy\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\): \({x^2} + {y^2} = 1\) qua phép đối xứng tâm \(I\left( {1;\;0} \right)\).
Giải phương trình $\tan \left( {\dfrac{\pi }{3} - x} \right).\tan \left( {\dfrac{\pi }{3} + 2x} \right) = 1$.
Gọi \(S\) là tập hợp các nghiệm thuộc khoảng \(\left( {0;100\pi } \right)\) của phương trình \({\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)^2} + \sqrt 3 \cos x = 3\). Tổng các phần tử của \(S\) là