Đề kiểm tra 15 phút chương 6: Phép dời hình và phép đồng dạng trong mặt phẳng - Đề số 1

Số câu: 12 câu  Thời gian làm bài: 15 phút


Phạm vi kiểm tra: Từ bài phép tịnh tiến đến hết bài phép đối xứng trục.

Bắt đầu làm bài
Câu 1 Thông hiểu

Trong mặt phẳng tọa độ \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Phép đối xứng trục \(Ox\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\) có phương trình là:


Câu 3 Nhận biết

Trong mặt phẳng $Oxy$ cho tam giác $ABC$ với $A\left( {1;3} \right),B\left( {2; - 4} \right),C\left( {3; - 2} \right)$ và điểm $G$ và trọng tâm tam giác $ABC$. Ảnh $G'$  của $G$ qua phép đối xứng trục $Ox$ có tọa độ là 


Câu 4 Thông hiểu

Cho đường thẳng $d$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành chính nó?


Câu 5 Nhận biết
Câu 6 Thông hiểu

Số phát biểu đúng trong các phát biểu sau:

(1) Phép tịnh tiến và phép đối xứng trục đều biến đường thẳng thành đường thẳng song song, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đương tròn thành đường tròn có cùng bán kính.

(2) Tứ giác $ABCD$ là hình thang cân đáy \(AD//BC\). Gọi $M,N$ lần lượt là trung điểm của hai cạnh bên $AB$ và $CD$. Khi đó, đường thẳng $MN$ là trục đối xứng của $ABCD$.

(3) Cho đường thẳng $d$ có phương trình \(y =  - x\). Ảnh của đường tròn \(\left( C \right):\,\,{\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 7\) qua  phép đối xứng trục $d$ là \(\left( {C'} \right):\,\,{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} = 7\)

(4) Ảnh của đường phân giác ứng với góc phần tư thứ $(I)$ qua phép đối xứng trục $Oy$ là đường thẳng $d$ có phương trình \(y =  - x\)


Câu 7 Nhận biết

Cho hai đường thẳng cắt nhau $d$ và $d'$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành đường thẳng $d'$?


Câu 8 Nhận biết

Hình gồm $2$ đường tròn có tâm và bán kính khác nhau có bao nhiêu trục đối xứng?


Câu 9 Vận dụng

Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $a'$  lần lượt có phương trình \(3x - 4y + 5 = 0\) và \(3x - 4y = 0\). Phép tịnh tiến theo \(\overrightarrow u \) biến đường thẳng $a$ thành đường thẳng $a'$. Khi đó độ dài bé nhất của vectơ \(\overrightarrow u \) bằng bao nhiêu?


Câu 10 Vận dụng

Trong mặt phẳng với hệ tọa độ $Oxy$, cho parabol $\left( P \right)$ có phương trình $y = {x^2} - x + 1$. Thực hiện liên tiếp hai phép tịnh tiến theo các vectơ $\overrightarrow u  = \left( {1; - 2} \right)$ và $\overrightarrow v  = \left( {2;3} \right)$, parabol $\left( P \right)$ biến thành parabol $\left( Q \right)$ có phương trình là:


Câu 11 Vận dụng

Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường thẳng $\Delta $ có phương trình $2x - y + 3 = 0$. Thực hiện phép tịnh tiến theo phương của trục hoành về bên trái hai đơn vị, đường thẳng $\Delta $  biến thành đường thẳng $\Delta '$ có phương trình là:


Câu 12 Vận dụng

Cho hàm số \(\left( C \right):\,\,y = \left| x \right|\). Giả sử \(\left( {C'} \right)\) đối xứng với \(\left( C \right)\) qua đường thẳng \(x = 1\). Khi đó, hàm số có đồ thị \(\left( {C'} \right)\) có dạng :