Đề kiểm tra 15 phút chương 2: Tổ hợp xác suất - Đề số 3

Số câu: 12 câu  Thời gian làm bài: 15 phút


Phạm vi kiểm tra: Từ bài Hai quy tắc đếm cơ bản đến hết bài Hoán vị chỉnh hợp tổ hợp (giải phương trình).

Bắt đầu làm bài
Câu 1 Thông hiểu

Với giá trị của $x$ thỏa mãn \(12C_x^1 + C_{x + 4}^2 = 162\) thì \(A_{x - 1}^2 - C_x^1 = ?\)


Câu 2 Thông hiểu

Trong một lớp có $17$ bạn nam và $11$  bạn nữ. Hỏi có bao nhiêu cách chọn ra một bạn làm lớp trưởng?


Câu 3 Nhận biết

Số tổ hợp chập \(k\) của \(n\) phần tử là:


Câu 4 Nhận biết

Công việc \(A\) có \(k\) công đoạn \({A_1},{A_2},...,{A_k}\) với số cách thực hiện lần lượt là \({n_1},{n_2},...,{n_k}\). Khi đó số cách thực hiện công việc \(A\) là:


Câu 5 Thông hiểu

Tổng giá trị của $x$ thỏa mãn phương trình \(C_x^1 + C_x^2 + C_x^3 = \dfrac{7}{2}x\) là


Câu 6 Thông hiểu

Số điện thoại ở Huyện Củ Chi có $7$ chữ số và bắt đầu bởi $3$ chữ số đầu tiên là $790$. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:


Câu 7 Thông hiểu

Cho phương trình \(A_x^3 + 2C_{x + 1}^{x - 1} - 3C_{x - 1}^{x - 3} = 3{x^2} + {P_6} + 159\). Giả sử \(x = {x_0}\) là nghiệm của phương trình trên, lúc này ta có:


Câu 8 Vận dụng

Có bao nhiêu số tự nhiên có các chữ số đôi một khác nhau nhỏ hơn $1000$ được lập từ năm chữ số $0,1,2,3,4$?


Câu 9 Vận dụng

Cho tập $A = \left\{ {2;5} \right\}$. Hỏi có thể lập được bao nhiêu số có $10$ chữ số, các chữ số lấy từ tập $A$ sao cho không có chữ số $2$ nào đứng cạnh nhau?


Câu 10 Vận dụng

Số tam giác xác định bởi các đỉnh của một đa giác đều \(10\) cạnh là:


Câu 11 Vận dụng

Giải hệ phương trình \(\left\{ \begin{array}{l}2A_x^y + 5C_x^y = 90\\5A_x^y - 2C_x^y = 80\end{array} \right.\) ta được nghiệm \(\left( {x;y} \right)\) thì $xy$ bằng :


Câu 12 Vận dụng

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}C_y^x:C_{y + 2}^x = \dfrac{1}{3}\\C_y^x:A_y^x = \dfrac{1}{{24}}\end{array} \right.\) là: