Đề kiểm tra 1 tiết chương 6: Phép dời hình và phép đồng dạng trong mặt phẳng - Đề số 2

Số câu: 25 câu  Thời gian làm bài: 45 phút


Phạm vi kiểm tra: Từ bài phép tịnh tiến đến hết bài phép vị tự.

Bắt đầu làm bài
Câu 2 Nhận biết

Trong hệ trục tọa độ $Oxy$ cho điểm \(I\left( {a;b} \right)\). Nếu phép đối xứng tâm $I$ biến điểm \(M\left( {x;y} \right)\) thành điểm \(M'\left( {x';y'} \right)\) thì ta có biểu thức


Câu 3 Thông hiểu

Trong mặt phẳng tọa độ \(Oxy\) cho phép vị tự \(V\) tỉ số \(k = 2\) biến điểm \(A\left( {1; - 2} \right)\) thành điểm \(A'\left( { - 5;1} \right).\) Hỏi phép vị tự \(V\) biến điểm \(B\left( {0;1} \right)\) thành điểm có tọa độ nào sau đây?


Câu 5 Thông hiểu

Phép vị tự tâm \(O\) tỉ số \( - 3\) lần lượt biến hai điểm \(A,{\rm{ }}B\) thành hai điểm \(C,{\rm{ }}D\). Mệnh đề nào sau đây đúng?


Câu 6 Nhận biết

Cho phép quay \(Q\left( {O;\alpha } \right)\) biến điểm $A$ thành điểm $M$ và các khẳng định sau:

a) $O$ cách đều $A$ và $M$

b) $O$ thuộc đường tròn đường kính $AM$.

c) Góc lượng giác \((OA,OM) = \alpha \)

Số khẳng định đúng là:


Câu 7 Thông hiểu

Gọi $m$ là ảnh của đường thẳng $d$ qua phép quay tâm $I$ góc quay \(\alpha \) (biết rằng $I$ không nằm trên $d$), đường thẳng $d$ song song với $m$ khi:


Câu 8 Nhận biết

Trong mặt phẳng với hệ tọa độ $Oxy$ , cho $T$ là một phép tịnh tiến theo vectơ $\overrightarrow u $ biến điểm $M\left( {x;y} \right)$ thành điểm $M'\left( {x';y'} \right)$ với biểu thức tọa độ là: $x = x' + 3;\,\,y = y' - 5$. Tọa độ của vectơ tịnh tiến $\overrightarrow u $ là:


Câu 9 Thông hiểu

Cho hai đường thẳng song song $a$ và $b$, một đường thẳng $c$ không song song với chúng. Có bao nhiêu phép tịnh tiến biến đường thẳng $a$ thành đường thẳng $b$ và biến đường thẳng $c$ thành chính nó?


Câu 10 Thông hiểu

Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $b$ lần lượt có phương trình là \(3x + 4y - 1 = 0\) và \(3x + 4y + 5 = 0\). Nếu phép đối xứng tâm biến a thành b thì tâm đối xứng phải là điểm nào trong các điểm sau đây ?


Câu 11 Thông hiểu

Trong mặt phẳng tọa độ \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Phép đối xứng trục \(Ox\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\) có phương trình là:


Câu 13 Nhận biết
Câu 15 Nhận biết

Có bao nhiêu phép đối xứng tâm biến một đường thẳng \(a\) cho trước thành chính nó?


Câu 16 Vận dụng

Trong mặt phẳng tọa độ $Oxy$, nếu phép tịnh tiến biến điểm \(A\left( {2; - 1} \right)\) thành điểm \(A'\left( {3;0} \right)\) thì nó biến đường thẳng nào sau đây thành chính nó?


Câu 17 Vận dụng

Trong mặt phẳng với hệ tọa độ $Oxy$, cho parabol $\left( P \right)$ có phương trình $y = {x^2} - x + 1$. Thực hiện liên tiếp hai phép tịnh tiến theo các vectơ $\overrightarrow u  = \left( {1; - 2} \right)$ và $\overrightarrow v  = \left( {2;3} \right)$, parabol $\left( P \right)$ biến thành parabol $\left( Q \right)$ có phương trình là:


Câu 18 Vận dụng

Trên tia phân giác ngoài $Cx$ của góc $C$ của tam giác $ABC$ lấy điểm $M$ không trùng với $C$ . Tìm mệnh đề đúng nhất ?


Câu 19 Vận dụng cao

Trong mặt phẳng \(Oxy\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\): \({x^2} + {y^2} = 1\) qua phép đối xứng tâm \(I\left( {1;\;0} \right)\).


Câu 20 Vận dụng

Cho lục giác đều $ABCDEF$, tâm $O$, các đỉnh được đặt theo thứ tự đó và cùng chiều kim đồng hồ. Thực hiện lần lượt phép quay tâm $O$ góc quay \({60^0}\) và phép tịnh tiến theo vector \(\overrightarrow {OC} \) thì ảnh của tam giác $ABO$ là:


Câu 22 Vận dụng

Trong mặt phẳng tọa độ $Oxy$ cho \(A\left( {1;2} \right),B\left( { - 3;1} \right)\). Phép vị tự tâm \(I\left( {2; - 1} \right)\) tỉ số $k = 2$ biến điểm $A$ thành $A'$ , phép đối xứng tâm $B$ biến $A'$  thành $B'$ . Tọa độ điểm $B'$  là:


Câu 23 Vận dụng

Trong mặt phẳng tọa độ $Oxy$. Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right)\). Phép vị tự tâm $I$ tỉ số $k$ biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}\) khi đó giá trị của $k$ là :


Câu 24 Vận dụng cao

Cho đường tròn \(\left( {O;R} \right)\) và một điểm $A$ cố định. Một điểm $M$ thay đổi trên \(\left( {O;R} \right)\), gọi $N$ là trung điểm của đoạn thẳng $AM$ . Khi $M$ thay đổi trên \(\left( {O;R} \right)\), tập hợp các điểm $N$ là:


Câu 25 Vận dụng cao

Cho tam giác $ABC$ và đường tròn tâm $O$. Trên đoạn $AB$, lấy điểm $E$ sao cho $BE = 2AE,F$ là trung điểm của $AC$ và $I$ là đỉnh thứ tư của hình bình hành $AEIF$. Với mỗi điểm $P$ trên $\left( O \right)$ ta dựng điểm $Q$ sao cho \(\overrightarrow {PA}  + 2\overrightarrow {PB}  + 3\overrightarrow {PC}  = 6\overrightarrow {IQ} \). Khi đó tập hợp điểm $Q$ khi $P$ thay đổi là: