Đề kiểm tra 1 tiết chương 6: Phép dời hình và phép đồng dạng trong mặt phẳng - Đề số 1

Số câu: 25 câu  Thời gian làm bài: 45 phút


Phạm vi kiểm tra: Toàn bộ nội dung chương phép dời hình và phép đồng dạng trong mặt phẳng.

Bắt đầu làm bài
Câu 4 Nhận biết

Trong mặt phẳng $Oxy$ cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm $O$ tỉ số \(k =  - 2\) biến điểm $M$ thành điểm nào trong các điểm sau?


Câu 5 Nhận biết

Trong hệ trục tọa độ $Oxy$ cho điểm \(I\left( {a;b} \right)\). Nếu phép đối xứng tâm $I$ biến điểm \(M\left( {x;y} \right)\) thành điểm \(M'\left( {x';y'} \right)\) thì ta có biểu thức


Câu 6 Nhận biết

Cho hai đường thẳng cắt nhau $d$ và $d'$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành đường thẳng $d'$?


Câu 7 Nhận biết

Điền cụm từ thích hợp vào chỗ chấm: “Phép đồng nhất là phép biến hình biến điểm \(M\) thành …”.


Câu 8 Thông hiểu

Trong mặt phẳng $Oxy$ cho parabol \(\left( P \right):y=4{x^2} - 7x + 3\). Phép đối xứng trục $Oy$ biến $\left( P \right)$ thành $\left( {P'} \right)$  có phương trình


Câu 9 Thông hiểu

Phép đồng nhất biến hình \(H\) thành hình \(H'\) thì:


Câu 11 Thông hiểu

Cho đường thẳng $d$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành chính nó?


Câu 12 Thông hiểu

Cho hai điểm \(M\left( { - 1;4} \right),M'\left( { - 4;5} \right)\). Phép vị tự tỉ số $k = 2$ biến $M$ thành $M'$  có tâm là điểm nào sau đây?


Câu 13 Nhận biết

Cho hình vuông tâm $O$. Hỏi có bao nhiêu phép quay tâm $O$, góc quay \(\alpha \,\,\left( {0 < \alpha  \le 360^0} \right)\) biến hình vuông đã cho thành chính nó.


Câu 14 Thông hiểu

Gọi $m$ là ảnh của đường thẳng $d$ qua phép quay tâm $I$ góc quay \(\alpha \) (biết rằng $I$ không nằm trên $d$), đường thẳng $d$ song song với $m$ khi:


Câu 15 Thông hiểu

Trong mặt phẳng $Oxy$, cho đường tròn $\left( C \right):\,\,{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 16$. Giả sử qua phép đối xứng tâm $I$ điểm \(A\left( {1;3} \right)\) biến thành điểm \(B\left( {a;b} \right)\). Tìm phương trình của đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đối xứng tâm $I$.


Câu 16 Nhận biết

Có bao nhiêu phép đối xứng tâm biến một đường thẳng \(a\) cho trước thành chính nó?


Câu 17 Vận dụng

Trong mặt phẳng với hệ tọa độ $Oxy$ , cho hai parabol: $\left( P \right):y = {x^2}$ và $\left( Q \right):y = {x^2} + 2x + 2$. Để chứng minh có một phép tịnh tiến $T$ biến $\left( Q \right)$ thành $\left( P \right)$ , một học sinh lập luận qua ba bước như sau:

- Bước 1: Gọi vectơ tịnh tiến là $\overrightarrow u  = \left( {a;b} \right)$, áp dụng biểu thức tọa độ của phép tịnh tiến:

$\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x' - a\\y = y' - b\end{array} \right.$

- Bước 2: Thế vào phương trình của $\left( Q \right)$ ta được:

$y' - b = {\left( {x' - a} \right)^2} + 2\left( {x' - a} \right) + 2 \Leftrightarrow y' = x{'^2} + 2\left( {1 - a} \right)x' + {a^2} - 2a + b + 2$

Suy ra ảnh của $\left( Q \right)$  qua phép tịnh tiến $T$ là parabol $\left( R \right):y = {x^2} + 2\left( {1 - a} \right)x + {a^2} - 2a + b + 2$

- Bước 3: Buộc $\left( R \right)$  trùng với $\left( P \right)$ ta được hệ: $\left\{ \begin{array}{l}2\left( {1 - a} \right) = 0\\{a^2} - 2a + b + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 1\end{array} \right.$

Vậy có duy nhất một phép tịnh tiến biến $\left( Q \right)$ thành $\left( P \right)$ , đó là phép tịnh tiến theo vectơ $\overrightarrow u  = \left( {1; - 1} \right)$

Hỏi lập luận trên đúng hay sai? Nếu sai thì sai bắt đầu từ bước nào?


Câu 18 Vận dụng

Trong mặt phẳng với hệ tọa độ $Oxy$, cho parabol $\left( P \right)$ có phương trình \(y = {x^2} - 2x\) và điểm \(I\left( { - 3;1} \right)\). Phép đối xứng tâm \({D_I}\) biến parabol $\left( P \right)$  thành parabol $\left( {P'} \right)$ có phương trình là 


Câu 19 Vận dụng

Cho lục giác đều $ABCDEF$, tâm $O$, các đỉnh được đặt theo thứ tự đó và cùng chiều kim đồng hồ. Thực hiện lần lượt phép quay tâm $O$ góc quay \({60^0}\) và phép tịnh tiến theo vector \(\overrightarrow {OC} \) thì ảnh của tam giác $ABO$ là:


Câu 20 Vận dụng

Trong mặt phẳng tọa độ $Oxy$. Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right)\). Phép vị tự tâm $I$ tỉ số $k$ biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}\) khi đó giá trị của $k$ là :


Câu 23 Vận dụng cao

Trong mặt phẳng \(Oxy\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\): \({x^2} + {y^2} = 1\) qua phép đối xứng tâm \(I\left( {1;\;0} \right)\).


Câu 24 Vận dụng cao

Cho đường tròn \(\left( {O;R} \right)\) và một điểm $A$ cố định. Một điểm $M$ thay đổi trên \(\left( {O;R} \right)\), gọi $N$ là trung điểm của đoạn thẳng $AM$ . Khi $M$ thay đổi trên \(\left( {O;R} \right)\), tập hợp các điểm $N$ là:


Câu 25 Vận dụng cao

Trong mặt phẳng tọa độ $Oxy$, cho đường thẳng \(d:\)\(3x - y + 2 = 0\). Viết phương trình đường thẳng \(d'\) là ảnh của $d$ qua phép quay tâm $O$ góc quay \( - {90^{\rm{o}}}\).