Đề kiểm tra 1 tiết chương 3: Dãy số - Đề số 1

Số câu: 25 câu  Thời gian làm bài: 45 phút


Phạm vi kiểm tra: Từ bài phương pháp quy nạp toán học đến hết bài cấp số nhân

Bắt đầu làm bài
Câu 1 Nhận biết

Cho dãy số \(\left( {{u_n}} \right),\) biết \({u_n} = {\left( { - 1} \right)^n}.2n.\) Mệnh đề nào sau đây sai?


Câu 3 Nhận biết

Cho cấp số nhân $\left( {{u_n}} \right)$, biết:  ${u_1} =  - 2,{u_2} = 8$ . Lựa chọn đáp án đúng.


Câu 5 Thông hiểu

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên), ta tiến hành hai bước:

\( \bullet \) Bước 1, kiểm tra mệnh đề \(P\left( n \right)\) đúng với \(n = p.\)

\( \bullet \) Bước 2, giả thiết mệnh đề \(P\left( n \right)\) đúng với số tự nhiên bất kỳ \(n = k \ge p\) và phải chứng minh rằng nó cũng đúng với \(n = k + 1.\)

Trong hai bước trên:


Câu 6 Thông hiểu

Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q > 0\) . Biết \({u_2} = 4;{u_4} = 9\) .


Câu 7 Nhận biết

Cho cấp số cộng \(\left( {{u_n}} \right)\) xác định bởi \({u_3} =  - 2\) và \({u_{n + 1}} = {u_n} + 3,\,\,\forall n \in N^*.\) Xác định số hạng tổng quát của cấp số cộng đó.


Câu 8 Thông hiểu

Nghiệm của phương trình $1 + 7 + 13 +  \ldots  + x = 280$ là:


Câu 9 Nhận biết

Cho  cấp số nhân$\left( {{u_n}} \right)$có ${u_1} =  - 1;\,q = \dfrac{{ - 1}}{{10}}$. Số $\dfrac{1}{{{{10}^{103}}}}$ là số hạng thứ bao nhiêu?


Câu 12 Thông hiểu

Số đo bốn góc của một tứ giác lồi lập thành một cấp số nhân, biết rằng số đo của góc lớn nhất gấp $8$  lần số đo của góc nhỏ nhất. Tìm góc lớn nhất:


Câu 13 Nhận biết

Tìm số hạng lớn nhất của dãy số \(\left( {{a_n}} \right)\) có \({a_n} =  - {n^2} + 4n + 11,\,\,\forall n \in N^*\) .


Câu 14 Thông hiểu

Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai khác $0$. Biết rằng các số \({u_1}{u_2};{u_2}{u_3};{u_1}{u_3}\) theo thứ tự đó lập thành cấp số nhân với công bội \(q \ne 0\). Khi đó $q$ bằng:


Câu 15 Vận dụng

Với \(n \in {N^*}\), ta xét các mệnh đề: $P:$“\({7^n} + 5\) chia hết cho $2$”; $Q:$ “\({7^n} + 5\) chia hết cho $3$” và $R:$ “\({7^n} + 5\) chia hết cho $6$”. Số mệnh đề đúng trong các mệnh đề trên là:


Câu 16 Vận dụng

Với mọi số tự nhiên \(n \ge 2\), bất đẳng thức nào sau đây đúng?


Câu 18 Vận dụng

Trên một bàn cờ có nhiều ô vuông. Người ta đặt $7$ hạt dẻ vào ô vuông đầu tiên, sau đó đặt tiếp vào ô vuông thứ hai nhiều hơn ô đầu tiên là $5$ hạt dẻ, tiếp tục đặt vào ô vuông thứ ba số hạt dẻ nhiều hơn ô thứ hai là $5$ hạt dẻ,… và cứ thế tiếp tục đến ô cuối cùng. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng hết $25450$ hạt dẻ. Hỏi bàn cờ đó có bao nhiêu ô?


Câu 19 Vận dụng

Mặt sàn tầng một của một ngôi nhà cao hơn mặt sân $0,5m$. Cầu thang đi từ tầng một lên tầng hai gồm $21$ bậc, mỗi bậc cao $18cm$. Ký hiệu ${h_n}$­ là độ cao của bậc thứ $n$ so với mặt sân. Viết công thức để tìm độ cao ${h_n}$.


Câu 20 Vận dụng

Biết rằng tồn tại các giá trị của \(x \in \left[ {0;2\pi } \right]\)  để ba số \(1 + \sin x,\,\,{\sin ^2}x,\,\,1 + \sin 3x\) lập thành một cấp số cộng, tính tổng $S$ các giá trị đó của $x$.


Câu 22 Vận dụng

Chu kì bán rã của nguyên tố phóng xạ poloni $210$ là $138$ ngày (nghĩa là sau $138$ ngày khối lượng của nguyên tố đó chỉ còn một nửa). Khi đó khối lượng còn lại của $20$ gam poloni $210$ sau $7314$ ngày là:


Câu 23 Vận dụng cao

Biết rằng tồn tại hai giá trị của tham số $m$ để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: \({x^4} - 10{x^2} + 2{m^2} + 7m = 0\), tính tổng lập phương của hai giá trị đó.


Câu 25 Vận dụng cao

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = \sqrt {2 + u_n^2} ,\,\,\forall n \ge 1\). Tổng \({S_{2018}} = u_1^2 + u_2^2 + ... + u_{2018}^2\)  là :