Đề kiểm tra 1 tiết chương 2: Tổ hợp xác suất - Đề số 1
Số câu: 25 câu Thời gian làm bài: 45 phút
Phạm vi kiểm tra: Toàn bộ kiến thức của chương Tổ hợp xác suất.
Cho biểu thức \(S = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}\). Khẳng định nào sau đây đúng?
Từ một hộp chứa $6$ quả cầu trắng và $4$ quả cầu đen, lấy ra ngẫu nhiên cùng một lúc $4$ quả. Xác suất để lấy ra được $4$ quả cùng màu là:
Số chỉnh hợp chập \(k\) của \(n\) phần tử là:
Với $n$ thỏa mãn \(A_n^3 + 5A_n^2 = 2\left( {n + 15} \right)\) thì:
Một chiếc hộp có $9$ thẻ đánh số từ $1$ đến $9$. Rút ngẫu nhiên $2$ thẻ rồi nhân hai số ghi trên hai thẻ với nhau. Xác suất để kết quả nhận được là một số lẻ.
Trong các thí nghiệm sau, thí nghiệm nào không phải là phép thử ngẫu nhiên?
Công việc \(A\) có \(k\) phương án \({A_1},...,{A_k}\) để thực hiện. Biết có \({n_1}\) cách thực hiện \({A_1}\),…,\({n_k}\) cách thực hiện \({A_k}\). Số cách thực hiện công việc \(A\) là:
Một lớp có $8$ học sinh được bầu chọn vào 3 chức vụ khác nhau: lớp trưởng, lớp phó và bí thư (không được kiêm nhiệm). Số cách lựa chọn khác nhau sẽ là:
Chọn ngẫu nhiên một số tự nhiên bé hơn $1000$. Xác suất để số đó chia hết cho $5$ là:
Trên giá sách có $10$ quyển Văn khác nhau, $8$ quyển sách Toán khác nhau và $6$ quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn?
Cho $8$ bạn học sinh $A,B,C,D,E,F,G,H$. Hỏi có bao nhiêu cách xếp $8$ bạn đó ngồi xung quanh một bàn tròn có $8$ ghế.
Có bao nhiêu số có \(5\) chữ số đôi một khác nhau tạo thành từ các chữ số \(1,2,3,4,5\)?
Giá trị của biểu thức \(A_{n + k}^{n + 1} + A_{n + k}^{n + 2}\) bằng biểu thức nào sau đây?
Hệ số của số hạng chứa \({x^{10}}\) trong khai triển nhi thức \({\left( {x + 2} \right)^n}\) biết n là số nguyên dương thỏa mãn \({3^n}C_n^0 - {3^{n - 1}}C_n^1 + {3^{n - 2}}C_n^2 - ... + {\left( { - 1} \right)^n}C_n^n = 2048\) là:
Hệ số của \({x^8}\) trong khai triển biểu thức \({x^2}{\left( {1 + 2x} \right)^{10}} - {x^4}{\left( {3 + x} \right)^8}\) thành đa thức bằng
Gieo đồng xu cân đối và đồng chất \(5\) lần liên tiếp. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:
Gieo ngẫu nhiên bốn đồng xu cân đối và đồng chất. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:
Một hộp đựng $8$ bi đỏ và $4$ bi xanh. Từ hộp trên lấy lần lượt ngẫu nhiên không hoàn lại từng viên bi đến viên bi thứ ba thì dừng. Xác suất để lấy được hai bi đỏ và một bi xanh là:
Hai cầu thủ bóng đá sút phạt đền, mỗi người được sút một quả với xác suất bàn tương ứng là $0,8$ và $0,7$. Tính xác suất để chỉ có $1$ cầu thủ làm bàn.
Biểu thức \(2C_n^k + 5C_n^{k + 1} + 4C_n^{k + 2}+C_n^{k+3}\) bằng biểu thức nào sau đây?
Gieo ba con xúc sắc cân đối, đồng chất. Xác suất để số chấm xuất hiện trên ba con xúc sắc đó bằng nhau là:
Cho $n$ là số nguyên dương thỏa mãn điều kiện $6.C_{n\, + \,1}^{n\, - \,1} = A_n^2 + 160.$ Tìm hệ số của ${x^7}$ trong khai triển $\left( {1 - 2{x^3}} \right){\left( {2 + x} \right)^n}.$