Trả lời phần câu hỏi ôn tập chương 2 phần Đại số trang 61 SGK toán 8 tập 1

Định nghĩa phân thức đại số. Một đa thức có phải là...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Câu 1

Định nghĩa phân thức đại số. Một đa thức có phải là một phân thức đại số không ? Một số thực bất kì có phải là một phân thức đại số không ? 

Lời giải chi tiết:

- Phân thức đại số ( phân thức ) là một biểu thức có dạng ABAB, trong đó A,BA,B là những đa thức B0,AB0,A là tử thức, BB là mẫu thức. 

- Một đa thức được coi như một phân thức với mẫu thức bằng 1.

- Một số thực bất kì cũng là một phân thức đại số. 

Câu 2

Định nghĩa hai phân thức đại số bằng nhau.

Lời giải chi tiết:

Hai phân thức ABAB và CDCD gọi là bằng nhau nếu: AD=BCAD=BC

Ta viết: AB=CDAB=CD nếu AD=BCAD=BC

Câu 3

Phát biểu tính chất cơ bản của phân thức đại số. 

Lời giải chi tiết:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho. 

AB=A.MB.MAB=A.MB.M ( MM là một đa thức khác đa thức 00)

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

AB=A:NB:NAB=A:NB:N ( NN là một nhân tử chung)

Câu 4

Nêu qui tắc rút gọn một phân thức đại số. Hãy rút gọn phân thức 8x48x318x48x31

Lời giải chi tiết:

Qui tắc rút gọn một phân thức đại số.

- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

- Chia cả tử và mẫu cho nhân tử chung đó.

Rút gọn: 

8x48x31=4(2x1)(2x)313=4(2x1)(2x1)(4x2+2x+1)=44x2+2x+1

Câu 5

Muốn qui đồng mẫu thức của nhiều phân thức có mẫu thức khác nhau làm thế nào ?

Hãy qui đồng mẫu thức của hai phân thức: xx2+2x+1 và 35x25

Lời giải chi tiết:

- Muốn qui đồng mẫu thức của nhiều phân thức ta có thể làm như sau:

    + Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

    + Tìm nhân tử phụ của mỗi mẫu thức.

    + Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

- Quy đồng mẫu hai phân thức trên:

Ta có:

x2+2x+1=(x+1)25x25=5(x21)=5(x+1)(x1)MTC=5(x+1)2.(x1)

Nhân tử phụ thứ nhất: 5(x1)

Nhân tử phụ thứ hai: x+1

Quy đồng: 

xx2+2x+1=x(x+1)2=x.5(x1)(x+1)2.5(x1)=5x(x1)5(x+1)2(x1)35x25=35(x1)(x+1)=3(x+1)5(x1)(x+1)(x+1)=3(x+1)5(x+1)2(x1)

Câu 6

Phát biểu các qui tắc: Cộng hai phân thức cùng mẫu thức, cộng hai phân thức khác mẫu thức. Làm tính cộng: 3xx31+x1x2+x+1

Lời giải chi tiết:

- Qui tắc cộng hai phân thức cùng mẫu:

    Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.

- Qui tắc cộng hai phân thức khác mẫu:

    Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

- Làm tính cộng:  

3xx31+x1x2+x+1=3x(x1)(x2+x+1)+(x1)(x1)(x1)(x2+x+1)=3x+(x1)(x1)(x1)(x2+x+1)=3x+(x1)2(x1)(x2+x+1)=3x+x22x+1(x1)(x2+x+1)=x2+x+1(x1)(x2+x+1)=1x1 

Câu 7

Hai phân thức như thế nào được gọi là hai phân thức đối nhau ? Tìm phân thức đối của phân thức x152x

Lời giải chi tiết:

- Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng 0. 

Phân thức đối của phân thức AB được kí hiệu là AB

- Phân thức đối của phân thức x152x là phân thức x152x=x12x5

Câu 8

Phát biểu qui tắc trừ hai phân thức đại số. 

Lời giải chi tiết:

Quy tắc: Muốn trừ phân thức AB cho phân thức CD, ta cộng AB với phân thức đối của CD 

Vậy: ABCD=AB+(CD).

Câu 9

Phát biểu qui tắc nhân hai phân thức đại số. 

Lời giải chi tiết:

Muốn nhân hai phân thức ta nhân các tử thức với nhau, các mẫu thức với nhau.

AB.CD=A.CB.D (với B,D0)

Câu 10

Cho phân thức AB khác 0, viết phân thức nghịch đảo của nó.

Lời giải chi tiết:

Phân thức nghịch đảo của phân thức AB khác 0 là BA.

Câu 11

Phát biểu qui tắc chia hai phân thức đại số.

Lời giải chi tiết:

Quy tắc: 

Muốn chia phân thức AB cho phân thức CD khác 0, ta nhân AB với phân thức nghịch đảo CD:

AB:CD=AB.DC với CD0.

Câu 12

Giả sử A(x)B(x) là một phân thức của biến xHãy nêu điều kiện của biến để giá trị của phân thức được xác định.

Phương pháp giải:

Phân thức xác định khi mẫu thức khác 0.

Lời giải chi tiết:

Phân thức được xác định khi biến x thỏa mãn B(x)0. 

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

close