Lý thuyết giao thoa ánh sáng1. Nhiễu xạ ánh sáng Quảng cáo
Lý thuyết giao thoa ánh sáng 1. HIỆN TƯỢNG NHIỄU XẠ ÁNH SÁNG Nhiễu xạ ánh sáng: là hiện tượng ánh sáng không tuân theo định luật truyền thẳng ánh sáng mà người quan sát được khi ánh sáng qua lỗ nhỏ hoặc gần mặt phẳng những vật trong suốt hoặc không trong suốt - Đối với ánh sáng đơn sắc: được đặc trưng bởi tần số f: fđỏ ≠ ftím \( \to \lambda = \dfrac{c}{f}\) - Khi ánh sáng qua mặt phân cách giữa hai môi trường thì: f - không đổi \( \to \lambda ' = \dfrac{v}{f} = \dfrac{v}{{\dfrac{c}{{{\lambda _{ck}}}}}} = \dfrac{{{\lambda _{ck}}}}{n}\) 2. GIAO THOA ÁNH SÁNG - Thí nghiệm của I-âng + Giải thích: S đóng vai trò là một nguồn phát sóng truyền tới S1, S2 khi đó, S1S2 là hai nguồn phát sóng kết hợp (cùng tần số và có độ lệch pha không đổi) + Kết luận: Hiện tượng giao thoa ánh sáng là bằng chứng thực nghiệm khẳng định ánh sáng có tính chất sóng. - Vị trí các vân giao thoa - khoảng vân Xét TN I-âng, với khoảng S1S2 = a, S1E = D, Bước sóng ánh sáng đơn sắc λ \(\left\{ \begin{array}{l}OM = x\\{d_2} - {d_1} = \dfrac{{{\rm{2ax}}}}{{{d_1} + {d_2}}}\end{array} \right.\) Xét \(x \ll D, \to \left\{ \begin{array}{l}{d_1} + {d_2} = 2D\\{d_2} - {d_1} = \dfrac{{{\rm{ax}}}}{D}\end{array} \right.\)
+ Vị trí vân sáng: \({d_2} - {\rm{ }}{d_1} = \dfrac{{{\rm{ax}}}}{D} = k\lambda \to {x_s} = k\dfrac{{\lambda D}}{a}\) Trong đó: k ℓà vân sáng bậc k (k = 0, ± 1, ± 2, ± 3….) Chú ý: k = 0 là vân sáng trung tâm + Vị trí vân tối: \({d_2} - {\rm{ }}{d_1} = \dfrac{{{\rm{ax}}}}{D} = \left( {k + \dfrac{1}{2}} \right)\lambda \to {x_t} = \left( {k + \dfrac{1}{2}} \right)\dfrac{{\lambda D}}{a}\) Trong đó (k = 0, ± 1, ± 2, ± 3 …). - Nếu k > 0: thì k ℓà vân tối thứ (k + 1) - Nếu k < 0 thì k ℓà vân tối thứ (-k) + Khoảng vân i: ℓà khoảng cách giữa hai vân sáng hoặc hai vân tối ℓiên tiếp: \(i = \dfrac{{\lambda D}}{a}\) \( \to {x_s} = ki;{x_t} = \left( {k + \dfrac{1}{2}} \right)i\) Trong đó:
+ Ứng dụng: Đo bước sóng ánh sáng \(\lambda = \dfrac{{ai}}{D}\) + Giữa $N$ vân sáng liên tiếp có $(N-1)$ khoảng vân + Khoảng cách từ vân sáng đến vân tối là $i/2$ + Vân tối thứ $k$ nằm giữa vân sáng thứ k và $(k-1)$ + Khi nhúng vào nước, khoảng vân giảm $n$ lần so với khi đặt ngoài không khí: \(i' = \dfrac{i}{n}\) ($n$ chiết suất tuyệt đối của nước) Video mô phỏng về vân giao thoa Sơ đồ tư duy về giao thoa ánh sáng - Vật lí 12
Quảng cáo
|